ﻻ يوجد ملخص باللغة العربية
For a constant coefficient partial differential operator $P(D)$ with a single characteristic direction such as the time-dependent free Schrodinger operator as well as non-degenerate parabolic differential operators like the heat operator we characterize when open subsets $X_1subseteq X_2$ of $mathbb{R}^d$ form a $P$-Runge pair. The presented condition does not require any kind of regularity of the boundaries of $X_1$ nor $X_2$. As part of our result we prove that for a large class of non-elliptic operators $P(D)$ there are smooth solutions $u$ to the equation $P(D)u=0$ on $mathbb{R}^d$ with support contained in an arbitarily narrow slab bounded by two parallel characteristic hyperplanes for $P(D)$.
We study the behaviour of linear partial differential operators with polynomial coefficients via a Wigner type transform. In particular, we obtain some results of regularity in the Schwartz space $mathcal S$ and in the space ${mathcal S}_omega$ as in
We prove Schwarz-Pick type estimates and coefficient estimates for a class of elliptic partial differential operators introduced by Olofsson. Then we apply these results to obtain a Landau type theorem.
We study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point $zetainpartialOmegacup{infty}$ of the quasilinear elliptic equations $$-text{div}(| abla u|_A^{p-2}A abla u)+V|u|^{p-2}u =0quadtext{in
We consider nonnegative solutions $u:Omegalongrightarrow mathbb{R}$ of second order hypoelliptic equations begin{equation*} mathscr{L} u(x) =sum_{i,j=1}^n partial_{x_i} left(a_{ij}(x)partial_{x_j} u(x) right) + sum_{i=1}^n b_i(x) partial_{x_i} u(x) =
In this paper, the regularity results for the integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre cite{CS1} are extended to those for the integro-differential operators associated with symmetric, regularly vary