ﻻ يوجد ملخص باللغة العربية
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatial distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an im
We perform various lattice numerical analyses with the energy-momentum tensor (EMT) defined through the gradient flow. We explore the spatial distribution of the stress tensor in static quark-anti-quark systems and thermodynamic quantities at nonzero
We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice Yang-Mills theories using the indirect (so-called HAL QCD) method. We use the cluster decomposition error reduction technique to improve the statistical a
We explore a novel approach to compute the force between a static quark and a static antiquark with lattice gauge theory directly. The approach is based on expectation values of Wilson loops or Polyakov loops with chromoelectric field insertions. We
We discuss the lattice formulation of the t Hooft surface, that is, the two-dimensional surface operator of a dual variable. The t Hooft surface describes the world sheets of topological vortices. We derive the formulas to calculate the expectation v