ﻻ يوجد ملخص باللغة العربية
Usage of GPUs as co-processors is a well-established approach to accelerate costly algorithms operating on matrices and vectors. We aim to further improve the performance of the Global Neutrino Analysis framework (GNA) by adding GPU support in a way that is transparent to the end user. To achieve our goal we use CUDA, a state of the art technology providing GPGPU programming methods. In this paper we describe new features of GNA related to CUDA support. Some specific framework features that influence GPGPU integration are also explained. The paper investigates the feasibility of GPU technology application and shows an example of the achieved acceleration of an algorithm implemented within framework. Benchmarks show a significant performance increase when using GPU transformations. The project is currently in the developmental phase. Our plans include implementation of the set of transformations necessary for the data analysis in the GNA framework and tests of the GPU expediency in the complete analysis chain.
We report on the status of GNA --- a new framework for fitting large-scale physical models. GNA utilizes the data flow concept within which a model is represented by a directed acyclic graph. Each node is an operation on an array (matrix multiplicati
Many high performance-computing algorithms are bandwidth limited, hence the need for optimal data rearrangement kernels as well as their easy integration into the rest of the application. In this work, we have built a CUDA library of fast kernels for
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed pri
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with ac
By introducing a common representational system for metadata that describe the employed simulation workflows, diverse sources of data and platforms in computational molecular engineering, such as workflow management systems, can become interoperable