ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Rashba splitting of quasi-1D surface states on Bi/InAs(110)-(2$times$1)

76   0   0.0 ( 0 )
 نشر من قبل Yoshiyuki Ohtsubo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic states on the Bi/InAs(110)-(2$times$1) surface and its spin-polarized structure are revealed by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES, and density-functional-theory calculation. The surface state showed quasi-one-dimensional (Q1D) dispersion and a nearly metallic character; the top of the hole-like surface band is just below the Fermi level. The size of the Rashba parameter ($alpha_{rm R}$) reached quite a large value ($sim$5.5 eVAA). The present result would provide a fertile playground for further studies of the exotic electronic phenomena in 1D or Q1D systems with the spin-split electronic states as well as for advanced spintronic devices.



قيم البحث

اقرأ أيضاً

Surface electronic structure and its one-dimensionality above and below the Fermi level ($E_{rm F}$) were surveyed on the Bi/GaSb(110)-(2$times$1) surface hosting quasi-one-dimensional (Q1D) Bi chains, using conventional (one-photon) and two-photon a ngle-resolved photoelectron spectroscopy (ARPES) and theoretical calculations. ARPES results reveal that the Q1D electronic states are within the projected bulk bandgap. Circular dichroism of two-photon ARPES and density-functional-theory calculation indicate clear spin and orbital polarization of the surface states consistent with the giant sizes of Rashba-type SOI, derived from the strong contribution of heavy Bi atoms. The surface conduction band above $E_{rm F}$ forms a nearly straight constant-energy contour, suggesting its suitability for application in further studies of one-dimensional electronic systems with strong SOI. A tight-binding model calculation based on the obtained surface electronic structure successfully reproduces the surface band dispersions and predicts possible one- to two-dimensional crossover in the temperature range of 60--100~K.
Thin Bi films are interesting candidates for spintronic applications due to a large spin-orbit splitting that, combined with the loss of inversion symmetry at the surface, results in a band structure that is not spin-degenerate. In recent years, appl ications for topological insulators based on Bi and Bi alloys have as well attracted much attention. Here we present ARPES studies of Bi/InAs(100) interface. Bismuth deposition followed by annealing of the surface results in the formation of one full Bi monolayer decorated by Bi-nanolines. We found that the building up of the interface does affect the electronic structure of the substrate. As a consequence of weak interaction, bismuth states are placed in the gaps of the electronic structure of InAs(100). We observe a strong resonance of the Bi electronic states close to the Fermi level; its intensity depends on the photon energy and the photon polarization. These states show nearly no dispersion when measured perpendicular to the nanolines, confirming their one-dimensionality.
One-dimensional (1D) electronic states were discovered on 1D surface atomic structure of Bi fabricated on semiconductor InSb(001) substrates by angle-resolved photoelectron spectroscopy (ARPES). The 1D state showed steep, Dirac-cone-like dispersion a long the 1D atomic structure with a finite direct bandgap opening as large as 150 meV. Moreover, spin-resolved ARPES revealed the spin polarization of the 1D unoccupied states as well as that of the occupied states, the orientation of which inverted depending on the wave vector direction parallel to the 1D array on the surface. These results reveal that a spin-polarized quasi-1D carrier was realized on the surface of 1D Bi with highly efficient backscattering suppression, showing promise for use in future spintronic and energy-saving devices.
We investigate the surface Rashba effect for a surface of reduced in-plane symmetry. Formulating a k.p perturbation theory, we show that the Rashba splitting is anisotropic, in agreement with symmetry-based considerations. We show that the anisotropi c Rashba splitting is due to the admixture of bulk states of different symmetry to the surface state, and it cannot be explained within the standard theoretical picture supposing just a normal-to-surface variation of the crystal potential. Performing relativistic ab initio calculations we find a remarkably large Rashba anisotropy for an unreconstructed Au(110) surface that is in the experimentally accessible range.
The interaction of water with oxide surfaces is of great interest for both fundamental science and applications. We present a combined theoretical [density functional theory (DFT)] and experimental [Scanning Tunneling Microscopy (STM), photoemission spectroscopy (PES)] study of water interaction with the two-dimensional titania overlayer that terminates the SrTiO$_3$(110)-(4$times$1) surface and consists of TiO$_4$ tetrahedra. STM, core-level and valence band PES show that H$_2$O neither adsorbs nor dissociates on the stoichiometric surface at room temperature, while it dissociates at oxygen vacancies. This is in agreement with DFT calculations, which show that the energy barriers for water dissociation on the stoichiometric and reduced surfaces are 1.7 and 0.9 eV, respectively. We propose that water weakly adsorbs on two-dimensional, tetrahedrally coordinated overlayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا