ﻻ يوجد ملخص باللغة العربية
Inspired by the split attractor flow conjecture for multi-centered black hole solutions in N=2 supergravity, we propose a formula expressing the BPS index $Omega(gamma,z)$ in terms of `attractor indices $Omega_*(gamma_i)$. The latter count BPS states in their respective attractor chamber. This formula expresses the index as a sum over stable flow trees weighted by products of attractor indices. We show how to compute the contribution of each tree directly in terms of asymptotic data, without having to integrate the attractor flow explicitly. Furthermore, we derive new representations for the index which make it manifest that discontinuities associated to distinct trees cancel in the sum, leaving only the discontinuities consistent with wall-crossing. We apply these results in the context of quiver quantum mechanics, providing a new way of computing the Betti numbers of quiver moduli spaces, and compare them with the Coulomb branch formula, clarifying the relation between attractor and single-centered indices.
We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connecte
Supersymmetric D-brane bound states on a Calabi-Yau threefold $X$ are counted by generalized Donaldsdon-Thomas invariants $Omega_Z(gamma)$, depending on a Chern character (or electromagnetic charge) $gammain H^*(X)$ and a stability condition (or cent
Whenever available, refined BPS indices provide considerably more information on the spectrum of BPS states than their unrefined version. Extending earlier work on the modularity of generalized Donaldson-Thomas invariants counting D4-D2-D0 brane boun
We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we c
We introduce a class of new algebras, the shifted quiver Yangians, as the BPS algebras for type IIA string theory on general toric Calabi-Yau three-folds. We construct representations of the shifted quiver Yangian from general subcrystals of the cano