ﻻ يوجد ملخص باللغة العربية
Gas bubbles immersed in a liquid and flowing through a large pressure gradient undergoes volumetric deformation in addition to possible deviatoric deformation. While the high density liquid phase can be assumed to be an incompressible fluid, the gas phase needs to be modelled as a compressible fluid for such bubble flow problems. The Rayleigh--Plesset (RP) equation describes such a bubble undergoing volumetric deformation due to changes in pressure in the ambient incompressible fluid, assuming axisymmetric dynamics. We propose a compressible-incompressible coupling of Smoothed Particle Hydrodynamics (SPH) and validate this coupling against the RP model in two dimensions. For different density ratios, a sinusoidal pressure variation is applied to the ambient incompressible liquid and the response of the bubble is observed and compared with the solutions of the axisymmetric RP equation.
We present an $rp$-adaptation strategy for high-fidelity simulation of compressible inviscid flows with shocks. The mesh resolution in regions of flow discontinuities is increased by using a variational optimiser to $r$-adapt the mesh and cluster deg
Experiments with cold atoms trapped in optical lattices offer the potential to realize a variety of novel phases but suffer from severe spatial inhomogeneity that can obscure signatures of new phases of matter and phase boundaries. We use a high temp
We propose a multi-resolution strategy that is compatible with the lattice Greens function (LGF) technique for solving viscous, incompressible flows on unbounded domains. The LGF method exploits the regularity of a finite-volume scheme on a formally
We present an unconditionally energy-stable scheme for approximating the incompressible Navier-Stokes equations on domains with outflow/open boundaries. The scheme combines the generalized Positive Auxiliary Variable (gPAV) approach and a rotational
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c