ﻻ يوجد ملخص باللغة العربية
Frank W. J. Hekking performed his PhD work on Aspects of Electron Transport in Semiconductor Nanostructures at the TU Delft in 1992. He then worked as a postdoc at the University of Karlsruhe, the University of Minnesota, the Cavendish Laboratory at the University of Cambridge, and the Ruhr University at Bochum. In 1999 he joined the LPMMC (Laboratoire de Physique et Mod elisation des Milieux Condens es) in Grenoble and was appointed Professor at the Universit e Joseph Fourier and afterwards Universit e Grenoble Alpes. Frank Hekking was nominated as a member of the Institut Universitaire de France, for the periods 2002-2007 and 2012-2017. This review provides an overview of his scientific contributions to several fields of mesoscopic electron transport and superconductivity as well as atomic gases, and is organized along sections describing the different themes.
We investigate the sympathetic relaxation of a free-standing, vibrating carbon nano-tube that is mounted on an atom chip and is immersed in a cloud of ultra-cold atoms. Gas atoms colliding with the nano-tube excite phonons via a Casimir-Polder potent
By making use of a recently proposed framework for the inference of thermodynamic irreversibility in bosonic quantum systems, we experimentally measure and characterize the entropy production rates in the non-equilibrium steady state of two different
We discuss a hybrid quantum system where a dielectric membrane situated inside an optical cavity is coupled to a distant atomic ensemble trapped in an optical lattice. The coupling is mediated by the exchange of sideband photons of the lattice laser,
We study the dynamics of two ensembles of atoms (or equivalently, atomic clocks) coupled to a bad cavity and pumped incoherently by a Raman laser. Our main result is the nonequilibrium phase diagram for this experimental setup in terms of two paramet
We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized p