ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Algorithm for Fuel-Optimal Impulsive Control of Linear Systems with Time-Varying Cost

78   0   0.0 ( 0 )
 نشر من قبل Adam Koenig
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a new fast and robust algorithm that provides fuel-optimal impulsive control input sequences that drive a linear time-variant system to a desired state at a specified time. This algorithm is applicable to a broad class of problems where the cost is expressed as a time-varying norm-like function of the control input, enabling inclusion of complex operational constraints in the control planning problem. First, it is shown that the reachable sets for this problem have identical properties to those in prior works using constant cost functions, enabling use of existing algorithms in conjunction with newly derived contact and support functions. By reformulating the optimal control problem as a semi-infinite convex program, it is also demonstrated that the time-invariant component of the commonly studied primer vector is an outward normal vector to the reachable set at the target state. Using this formulation, a fast and robust algorithm that provides globally optimal impulsive control input sequences is proposed. The algorithm iteratively refines estimates of an outward normal vector to the reachable set at the target state and a minimal set of control input times until the optimality criteria are satisfied to within a user-specified tolerance. Next, optimal control inputs are computed by solving a quadratic program. The algorithm is validated through simulations of challenging example problems based on the recently proposed Miniaturized Distributed Occulter/Telescope small satellite mission, which demonstrate that the proposed algorithm converges several times faster than comparable algorithms in literature.



قيم البحث

اقرأ أيضاً

Linear time-varying (LTV) systems are widely used for modeling real-world dynamical systems due to their generality and simplicity. Providing stability guarantees for LTV systems is one of the central problems in control theory. However, existing app roaches that guarantee stability typically lead to significantly sub-optimal cumulative control cost in online settings where only current or short-term system information is available. In this work, we propose an efficient online control algorithm, COvariance Constrained Online Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a large class of LTV systems while also minimizing the control cost. The proposed method incorporates a state covariance constraint into the semi-definite programming (SDP) formulation of the LQ optimal controller. We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for th e future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(lambda^k T)$, where $lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(lambda^k)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.
We consider the linear quadratic Gaussian control problem with a discounted cost functional for descriptor systems on the infinite time horizon. Based on recent results from the deterministic framework, we characterize the feasibility of this problem using a linear matrix inequality. In particular, conditions for existence and uniqueness of optimal controls are derived, which are weaker compared to the standard approaches in the literature. We further show that also for the stochastic problem, the optimal control is given in terms of the stabilizing solution of the Lure equation, which generalizes the algebraic Riccati equation.
The interest in non-linear impulsive systems (NIS) has been growing due to its impact in application problems such as disease treatments (diabetes, HIV, influenza, among many others), where the control action (drug administration) is given by short-d uration pulses followed by time periods of null values. Within this framework the concept of equilibrium needs to be extended (redefined) to allows the system to keep orbiting (between two consecutive pulses) in some state space regions out of the origin, according to usual objectives of most real applications. Although such regions can be characterized by means of a discrete-time system obtained by sampling the NIS at the impulsive times, no agreements have reached about their asymptotic stability (AS). This paper studies the asymptotic stability of control equilibrium orbits for NSI, based on the underlying discrete time system, in order to establish the conditions under which the AS for the latter leads to the AS for the former. Furthermore, based on the latter AS characterization, an impulsive Model Predictive Control (i-MPC) that feasibly stabilizes the non-linear impulsive system is presented. Finally, the proposed stable MPC is applied to two control problems of interest: the intravenous bolus administration of Lithium and the administration of antiretrovirals for HIV treatments.
160 - Riccardo Bonalli 2017
- In this paper we introduce a new method to solve fixed-delay optimal control problems which exploits numerical homotopy procedures. It is known that solving this kind of problems via indirect methods is complex and computationally demanding because their implementation is faced with two difficulties: the extremal equations are of mixed type, and besides, the shooting method has to be carefully initialized. Here, starting from the solution of the non-delayed version of the optimal control problem, the delay is introduced by numerical homotopy methods. Convergence results, which ensure the effectiveness of the whole procedure, are provided. The numerical efficiency is illustrated on an example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا