ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for H I Lyman $alpha$ Counterparts to Ultra-Fast X-ray Outflows

82   0   0.0 ( 0 )
 نشر من قبل Gerard A. Kriss
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. A. Kriss STScI




اسأل ChatGPT حول البحث

Prompted by the H I Ly$alpha$ absorption associated with the X-ray ultra-fast outflow at -17,300 $rm km~s^{-1}$ in the quasar PG~1211+143, we have searched archival UV spectra at the expected locations of H I Ly$alpha$ absorption for a large sample of ultra-fast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Ly$alpha$ wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which UFOs were detected. In our spectra broad features with full-width at half-maximum of 1000 $rm km~s^{-1}$ have 2-$sigma$ upper limits on the H I column density of generally <$2times10^{13}~rm cm^{-2}$. Using grids of photoionization models covering a broad range of spectral energy distributions, we find that producing Fe XXVI Ly$alpha$ X-ray absorption with equivalent widths $>30$ eV and associated H I Ly$alpha$ absorption with $rm N_{HI}<2times10^{13}~cm^{-2}$ requires total absorbing column densities $rm N_{H}>5times10^{22}~cm^{-2}$ and ionization parameters log $xi$ > 3.7. Nevertheless, a wide range of SEDs would predict observable H I Ly$alpha$ absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Ly$alpha$ features in the archival UV spectra indicates that either the UFOs have very high ionization parameters, very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations due to variability.



قيم البحث

اقرأ أيضاً

Substantial evidence in the last few decades suggests that outflows from supermassive black holes (SMBH) may play a significant role in the evolution of galaxies.Large-scale outflows known as warm absorbers (WA) and fast disk winds known as ultra-fas t outflows (UFO) are commonly found in the spectra of many Seyfert galaxies and quasars, and a correlation has been suggested between them. Recent detections of low ionization and low column density outflows, but with a high velocity comparable to UFOs, challenge such initial possible correlations. Observations of UFOs in AGN indicate that their energetics may be enough to have an impact on the interstellar medium (ISM). However, observational evidence of the interaction between the inner high-ionization outflow and the ISM is still missing. We present here the spectral analysis of 12 XMM-Newton/EPIC archival observations of the quasar PG 1114+445, aimed at studying the complex outflowing nature of its absorbers. Our analysis revealed the presence of three absorbing structures. We find a WA with velocity $vsim530$ km s$^{-1}$, ionization $logxi/text{erg cm s}^{-1}sim0.35,$ and column density $log N_text{H}/text{cm}^{-2}sim22$, and a UFO with $v_text{out}sim0.145c$, $logxi/text{erg cm s}^{-1}sim4$, and $log N_text{H}/text{cm}^{-2}sim23$. We also find an additional absorber in the soft X-rays ($E<2$ keV) with velocity comparable to that of the UFO ($v_text{out}sim0.120c$), but ionization ($logxi/text{erg cm s}^{-1}sim0.5$) and column density ($log N_text{H}/text{cm}^{-2}sim21.5$) comparable with those of the WA. The ionization, velocity, and variability of the three absorbers indicate an origin in a multiphase and multiscale outflow, consistent with entrainment of the clumpy ISM by an inner UFO moving at $sim15%$ the speed of light, producing an entrained ultra-fast outflow (E-UFO).
130 - Ming Sun , Chong Ge , Rongxin Luo 2021
The impact of ram pressure stripping (RPS) on galaxy evolution has been studied for over forty years. Recent multi-wavelength data have revealed many examples of galaxies undergoing RPS, often accompanied with multi-phase tails. As energy transfer in the multi-phase medium is an outstanding question in astrophysics, RPS galaxies are great objects to study. Despite the recent burst of observational evidence, the relationship between gas in different phases in the RPS tails is poorly known. Here we report, for the first time, a strong linear correlation between the X-ray surface brightness (SB$_{rm X}$) and the H$alpha$ surface brightness (SB$_{rm Halpha}$) of the diffuse gas in the RPS tails at $sim$ 10 kpc scales, as SB$_{rm X}$/SB$_{rm Halpha} sim$ 3.6. This discovery supports the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM) as the origin of the multi-phase RPS tails. The established relation in stripped tails, also in comparison with the likely similar correlation in similar environments like X-ray cool cores and galactic winds, provides an important test for models of energy transfer in the multi-phase gas. It also indicates the importance of the H$alpha$ data for our understanding of the ICM clumping and turbulence.
405 - F. Tombesi 2012
X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on the connection between accretion disks, winds and jets.
189 - E.Chiosi , M.Orio , F. Bernardini 2014
We searched optical/UV/IR counterparts of seven supersoft X-ray sources (SSS) in M31 in the Hubble Space Telescope (HST) Panchromatic Hubble Andromeda Treasury (PHAT) archival images and photometric catalog. Three of the SSS were transient, the other four are persistent sources. The PHAT offers the opportunity to identify SSS hosting very massive white dwarfs that may explode as type Ia supernovae in single degenerate binaries, with magnitudes and color indexes typical of symbiotic stars, high mass close binaries, or systems with optically luminous accretion disks. We find evidence that the transient SSS were classical or recurrent novae; two likely counterparts we identified are probably symbiotic binaries undergoing mass transfer at a very high rate. There is a candidate accreting white dwarf binary in the error circle of one of the persistent sources, r3-8. In the spatial error circle of the best studied SSS in M31, r2-12, no red giants or AGB stars are sufficiently luminous in the optical and UV bands to be symbiotic systems hosting an accreting and hydrogen burning white dwarf. This SSS has a known modulation of the X-ray flux with a 217.7 s period, and we measured an upper limit on its derivative, 0.82 x 10(-11). This limit can be reconciled with the rotation period of a white dwarf accreting at high rate in a binary with a few-hours orbital period. However, there is no luminous counterpart with color indexes typical of an accretion disk irradiated by a hot central source. Adopting a semi-empirical relationship, the upper limit for the disk optical luminosity implies an upper limit of only 169 minutes for the orbital period of the white dwarf binary.
A search for emission lines in foreground galaxies in quasar spectra (z(gal) < z(QSO)) of the Sloan Digital Sky Survey (SDSS) data release 5 (DR5) reveals 23 examples of quasars shining through low redshift, foreground galaxies at small impact parame ters (< 10 kpc). About 74,000 quasar spectra were examined by searching for narrow H{alpha} emission lines at z < 0.38, at a flux level greater than 5 times 10^-17 ergs cm^-2 s^-1, then confirming that other expected emission lines of the H II regions in the galaxy are detected. The galaxies were deblended from the quasar images to get colors and morphologies. For cases that allow the galaxy and the quasar to be deblended, the galaxies are blue (0.95 <(u-r)< 1.95). Extinction and reddening through the galaxies is determined from the (g-i) color excesses of the quasars. These reddening values are compared with the flux ratio of H{alpha} to H{beta}, which reflect the extinction for an undetermined fraction of the sightline through each galaxy. No trends were found relating E(B-V)_(g-i), impact parameter (b), and (u-r) for the galaxies or between E(B-V) derived from (g-i) and that derived from H{alpha}/H{beta}. Comparison with previous studies of quasar absorption systems indicate our sample is more reddened, suggesting disk-dominated absorber galaxies. Measurement or limits on galactic, interstellar Ca II and Na I absorption lines are given from the quasar spectrum. No trends were found relating Ca II equivalent width (W (Ca II)) or Na I equivalent width (W (Na I)) to b, but a correlation of r_s = -0.77 ({alpha} = 0.05) was found relating W (Ca II) and E(B-V)(g-i) .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا