ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial two-dimensional polar metal at room temperature

90   0   0.0 ( 0 )
 نشر من قبل Yanwei Cao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO$_3$/SrTiO$_3$/LaTiO$_3$. A combination of atomic resolution scanning transmission electron microscopy with electron energy loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.



قيم البحث

اقرأ أيضاً

The advent of long-range magnetic order in non-centrosymmetric compounds has stimulated interest in the possibility of exotic spin transport phenomena and topologically protected spin textures for applications in next-generation spintronics. This wor k reports a novel wurtzite-structure polar magnetic metal, identified as AA-stacked (Fe0.5Co0.5)5-xGeTe2, which exhibits a Neel-type skyrmion lattice as well as a Rashba-Edelstein effect at room temperature. Atomic resolution imaging of the structure reveals a structural transition as a function of Co-substitution, leading to the polar phase at 50% Co. This discovery reveals an unprecedented layered polar magnetic system for investigating intriguing spin topologies and ushers in a promising new framework for spintronics.
Manipulating materials with atomic-scale precision is essential for the development of next-generation material design toolbox. Tremendous efforts have been made to advance the compositional, structural, and spatial accuracy of material deposition an d patterning. The family of 2D materials provides an ideal platform to realize atomic-level material architectures. The wide and rich physics of these materials have led to fabrication of heterostructures, superlattices, and twisted structures with breakthrough discoveries and applications. Here, we report a novel atomic-scale material design tool that selectively breaks and forms chemical bonds of 2D materials at room temperature, called atomic-layer substitution (ALS), through which we can substitute the top layer chalcogen atoms within the 3-atom-thick transition-metal dichalcogenides using arbitrary patterns. Flipping the layer via transfer allows us to perform the same procedure on the other side, yielding programmable in-plane multi-heterostructures with different out-of-plane crystal symmetry and electric polarization. First-principle calculations elucidate how the ALS process is overall exothermic in energy and only has a small reaction barrier, facilitating the reaction to occur at room temperature. Optical characterizations confirm the fidelity of this design approach, while TEM shows the direct evidence of Janus structure and suggests the atomic transition at the interface of designed heterostructure. Finally, transport and Kelvin probe measurements on MoXY (X,Y=S,Se; X and Y corresponding to the bottom and top layers) lateral multi-heterostructures reveal the surface potential and dipole orientation of each region, and the barrier height between them. Our approach for designing artificial 2D landscape down to a single layer of atoms can lead to unique electronic, photonic and mechanical properties previously not found in nature.
309 - W. X. Zhou , H. J. Wu , J. Zhou 2020
Integrating multiple properties in a single system is crucial for the continuous developments in electronic devices. However, some physical properties are mutually exclusive in nature. Here, we report the coexistence of two seemingly mutually exclusi ve properties-polarity and two-dimensional conductivity-in ferroelectric Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin films at the LaAlO$_3$/Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ interface at room temperature. The polarity of a ~3.2 nm Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin film is preserved with a two-dimensional mobile carrier density of ~0.05 electron per unit cell. We show that the electronic reconstruction resulting from the competition between the built-in electric field of LaAlO$_3$ and the polarization of Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ is responsible for this unusual two-dimensional conducting polar phase. The general concept of exploiting mutually exclusive properties at oxide interfaces via electronic reconstruction may be applicable to other strongly-correlated oxide interfaces, thus opening windows to new functional nanoscale materials for applications in novel nanoelectronics.
97 - Mao Ye , Songbai Hu , Shanming Ke 2019
Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom1-5. Ferroelectric polarization and metallicity are well-known examples of mutually exclusive proper ties that cannot coexist in bulk solids because the net electric field in a metal can be fully screened by free electrons6. An atomically thin metallic layer capped by insulating layers has shown decent conductivity at room temperature7. Moreover, a penetrating polarization field can be employed to induce an ion displacement and create an intrinsic polarization in the metallic layer. Here we demonstrate that a ferroelectric metal can be artificially synthesized through imposing a strong polarization field in the form of ferroelectric/unit-cell-thin metal superlattices. In this way the symmetry of an atomically thin conductive layer can be broken and manipulated by a neighboring polar field, thereby forming a two-dimensional (2D) ferroelectric metal. The fabricated of (SrRuO3)1/(BaTiO3)10 superlattices exhibit ferroelectric polarization in an atomically thin layer with metallic conductivity at room temperature. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of 2D electrical conductivity in the SrRuO3 monolayer accompanied by the electric polarization. Such 2D ferroelectric metal paves a novel way to engineer a quantum multi-state with unusual coexisting properties, such as ferroelectrics, ferromagnetics and metals, manipulated by external fields8,9.
76 - Dong Wu , Y. C. Ma , Y. Y. Niu 2018
Charge-density wave (CDW) is one of the most fundamental quantum phenomena in solids. Different from ordinary metals in which only single particle excitations exist, CDW also has collective excitations and can carry electric current in a collective f ashion. Manipulating this collective condensation for applications has long been a goal in the condensed matter and materials community. Here we show that the CDW system of 1T-TaS2 is highly sensitive to light directly from visible down to terahertz, with current responsivities around the order of ~1 AW-1 at room temperature. Our findings open a new avenue for realizing uncooled, ultrabroadband and sensitive photoelectronics continuously down to terahertz spectral range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا