ﻻ يوجد ملخص باللغة العربية
In this work, we revisit the thermodynamical self-consistency of the quasiparticle model with the finite baryon chemical potential adjusted to lattice QCD calculations. Here, we investigate the possibility that the effective quasiparticle mass is also a function of its momentum, $k$, in addition to temperature $T$ and chemical potential $mu$. It is found that the thermodynamic consistency can be expressed in terms of an integro-differential equation concerning $k$, $T$, and $mu$. We further discuss two special solutions, both can be viewed as sufficient condition for the thermodynamical consistency, while expressed in terms of a particle differential equation. The first case is shown to be equivalent to those previously discussed by Peshier et al. The second one, obtained through an ad hoc assumption, is an intrinsically different solution where the particle mass is momentum dependent. These equations can be solved by using boundary condition determined by the lattice QCD data at vanishing baryon chemical potential. By numerical calculations, we show that both solutions can reasonably reproduce the recent lattice QCD results of the Wuppertal-Budapest and HotQCD Collaborations, and in particular, those concerning finite baryon density. Possible implications are discussed.
In the context of holographic QCD we analyze Sakai-Sugimotos chiral model at finite baryon density and zero temperature. The baryon number density is introduced through compact D4 wrapping S^4 at the tip of D8-bar{D8}. Each baryon acts as a chiral po
We introduce an effective quark-meson-nucleon model for the QCD phase transitions at finite baryon density. The nucleon and the quark degrees of freedom are described within a unified framework of a chiral linear sigma model. The deconfinement transi
Using the AdS/CFT correspondence, we compute the spectral functions of thermal super Yang Mills at large N_c coupled to a small number of flavours of fundamental matter, N_f<<N_c, in the presence of a nonzero baryon density. The holographic dual of s
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from la
Fluctuations of conserved charges are sensitive to the QCD phase transition and a possible critical endpoint in the phase diagram at finite density. In this work, we compute the baryon number fluctuations up to tenth order at finite temperature and d