ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinning down Anomalous $WWgamma$ Couplings at the LHC

66   0   0.0 ( 0 )
 نشر من قبل Sreerup Raychaudhuri
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make a careful analysis of $W^pmgamma$ production at the LHC, identifying the $W^pm$ through leptonic decays, with a view to exploring the sensitivity of the machine to anomalous $CP$-conserving $WWgamma$ interactions. All the available kinematic variables are used, but we find that the most useful one is the opening angle in the transverse plane between the decay products of the $W^pm$. It is shown that even a simple-minded analysis using this variable can lead to a much greater sensitivity at the LHC than the current constraints on the relevant parameters.



قيم البحث

اقرأ أيضاً

We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg --> t t_bar --> (b mu+ nu_mu) (b_bar mu- nu_mu_bar). We consider several counting asymmetries at the parton lev el and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.
78 - T. Figy , V. Hankele , G. Klamke 2006
Deviations from SM expectations in the Higgs sector can be parameterized by an effective Lagrangian. The corresponding anomalous couplings have been implemented in a Monte Carlo program for Higgs production in vector boson fusion, at NLO QCD accuracy . It allows to study anomalous coupling effects for production and decay of the Higgs boson. We analyze deviations allowed by LEP data and study a new azimuthal angle variable which directly measures the interference between CP-even, CP-odd and SM couplings.
Using the event generator WHIZARD we study in a realistic ILC environment the prospects of measuring properties of sneutrinos that decay invisibly into the lightest neutralino and the neutrino.
The exclusive two-photon production at the LHC of pairs of W and Z bosons provides a novel and unique test-ground for the electroweak gauge boson sector. In particular it offers, thanks to high gamma-gamma center-of-mass energies, large and direct se nsitivity to the anomalous quartic gauge couplings otherwise very difficult to investigate at the LHC. An initial analysis has been performed assuming leptonic decays and generic acceptance cuts. Simulation of a simple counting experiment has shown for the integrated luminosity of 10 fb-1 at least four thousand times larger sensitivity to the genuine quartic couplings, a_0^W, a_0^Z, a_C^W and a_C^Z, than those obtained at LEP. The impact of the unitarity constraints on the estimated limits has been studied using the dipole form-factors. Finally, differential distributions of the decay leptons have been provided to illustrate the potential for further improvements of the sensitivities.
The vector boson scattering at the Large Hadron Collider (LHC) is sensitive to anomalous quartic gauge couplings (aQGCs). In this paper, we investigate the aQGC contribution to $ W gamma jj$ production at the LHC with $sqrt{s}=13$ TeV in the context of an effective field theory (EFT). The unitarity bound is applied as a cut on the energy scale of this production process, which is found to have significant suppressive effects on the signals. To enhance the statistical significance, we analyse the kinematic and polarization features of the aQGC signals in detail. We find that the polarization effects induced by the aQGCs are unique and can discriminate the signals from the SM backgrounds well. With the proposed event selection strategy, we obtain the constraints on the coefficients of dimension-8 operators with current luminosity. The results indicate that the process $pp to W gamma jj$ is powerful for searching for the $O_{M_{2,3,4,5}}$ and $O_{T_{5,6,7}}$ operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا