Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $Nto infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e, for non-integrable Riesz kernels of the form $|x-y|^{-s}$ with $s>d.$ As a consequence, we immediately get (thanks to the Poppy-seed bagel theorem) lower estimates for the large $N$ limits of minimal hypersingular Riesz energy on compact $d$-rectifiable sets. Furthermore, for the Gaussian potential $exp(-alpha|x-y|^2)$ on $mathbb{R}^p,$ we obtain lower bounds for the energy of infinite configurations having a prescribed density.