ﻻ يوجد ملخص باللغة العربية
To help mitigate road congestion caused by the unrelenting growth of traffic demand, many transportation authorities have implemented managed lane policies, which restrict certain freeway lanes to certain types of vehicles. It was originally thought that managed lanes would improve the use of existing infrastructure through demand-management behaviors like carpooling, but implementations have often been characterized by unpredicted phenomena that are sometimes detrimental to system performance. The development of traffic models that can capture these sorts of behaviors is a key step for helping managed lanes deliver on their promised gains. Towards this goal, this paper presents an approach for solving for driver behavior of entering and exiting managed lanes at the macroscopic (i.e., fluid approximation of traffic) scale. Our method is inspired by recent work in extending a dynamic-system-based modeling framework from traffic behaviors on individual roads, to models at junctions, and can be considered a further extension of this dynamic-system paradigm to the route/lane choice problem. Unlike traditional route choice models that are often based on discrete-choice methods and often rely on computing and comparing drivers estimated travel times from taking different routes, our method is agnostic to the particular choice of physical traffic model and is suited specifically towards making decisions at these interfaces using only local information. These features make it a natural drop-in component to extend existing dynamic traffic modeling methods.
This paper addresses an open problem in traffic modeling: the second-order macroscopic node problem. A second-order macroscopic traffic model, in contrast to a first-order model, allows for variation of driving behavior across subpopulations of vehic
Misunderstanding of driver correction behaviors (DCB) is the primary reason for false warnings of lane-departure-prediction systems. We propose a learning-based approach to predicting unintended lane-departure behaviors (LDB) and the chance for drive
In this paper we present a Learning Model Predictive Controller (LMPC) for autonomous racing. We model the autonomous racing problem as a minimum time iterative control task, where an iteration corresponds to a lap. In the proposed approach at each l
An analytical approach for a dynamic cyber-security problem that captures progressive attacks to a computer network is presented. We formulate the dynamic security problem from the defenders point of view as a supervisory control problem with imperfe
We developed a code that estimates distances to stars using measured spectroscopic and photometric quantities. We employ a Bayesian approach to build the probability distribution function over stellar evolutionary models given these data, delivering