Distributed Load-Side Control: Coping with Variation of Renewable Generations


الملخص بالإنكليزية

This paper addresses the distributed frequency control problem in a multi-area power system taking into account of unknown time-varying power imbalance. Particularly, fast controllable loads are utilized to restore system frequency under changing power imbalance in an optimal manner. The imbalanced power causing frequency deviation is decomposed into three parts: a known constant part, an unknown low-frequency variation and a high-frequency residual. The known steady part is usually the prediction of power imbalance. The variation may result from the fluctuation of renewable resources, electric vehicle charging, etc., which is usually unknown to operators. The high-frequency residual is usually unknown and treated as an external disturbance. Correspondingly, in this paper, we resolve the following three problems in different timescales: 1) allocate the steady part of power imbalance economically; 2) mitigate the effect of unknown low-frequency power variation locally; 3) attenuate unknown high-frequency disturbances. To this end, a distributed controller combining consensus method with adaptive internal model control is proposed. We first prove that the closed-loop system is asymptotically stable and converges to the optimal solution of an optimization problem if the external disturbance is not included. We then prove that the power variation can be mitigated accurately. Furthermore, we show that the closed-loop system is robust against both parameter uncertainty and external disturbances. The New England system is used to verify the efficacy of our design.

تحميل البحث