ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate a simple and robust optical fibers based method to achieve simultaneously efficient excitation and fluorescence collection from Nitrogen-Vacancy (NV) defects containing micro-crystalline diamond. We fabricate a suitable micro-concave (MC) mirror that focuses scattered excitation laser light into the diamond located at the focal point of the mirror. At the same instance, the mirror also couples the fluorescence light exiting out of the diamond crystal in the opposite direction of the optical fiber back into the optical fiber within its light acceptance cone. This part of fluorescence would have been otherwise lost from reaching the detector. Our proof-of-principle demonstration achieves a 25 times improvement in fluorescence collection compared to the case of not using any mirrors. The increase in light collection favors getting high signal-to-noise ratio (SNR) optically detected magnetic resonance (ODMR) signals hence offers a practical advantage in fiber-based NV quantum sensors. Additionally, we compacted the NV sensor system by replacing some bulky optical elements in the optical path with a 1x2 fiber optical coupler in our optical system. This reduces the complexity of the system and provides portability and robustness needed for applications like magnetic endoscopy and remote-magnetic sensing.
Efficiently excite nitrogen-vacancy (NV) centers in diamond and collect their fluorescence significantly benefit the fiber-optic-based NV sensors. Here, using a tapered optical fiber (TOF) tip, we significantly improve the efficiency of the laser exc
Diamond nitrogen-vacancy (NV) center magnetometry has recently received considerable interest from researchers in the fields of applied physics and sensors. The purpose of this review is to analyze the principle, sensitivity, technical development po
Symmetry considerations are used in presenting a model of the electronic structure and the associated dynamics of the nitrogen-vacancy center in diamond. The model accounts for the occurrence of optically induced spin polarization, for the change of
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV centers spin state typically require averaging over
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar