We prove full boundary regularity for minimizing biharmonic maps with smooth Dirichlet boundary conditions. Our result, similarly as in the case of harmonic maps, is based on the nonexistence of nonconstant boundary tangent maps. With the help of recently derivated boundary monotonicity formula for minimizing biharmonic maps by Altuntas we prove compactness at the boundary following Schevens interior argument. Then we combine those results with the conditional partial boundary regularity result for stationary biharmonic maps by Gong--Lamm--Wang.