ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Star Kicks II: Revision and further testing of the conservation of momentum kick model

129   0   0.0 ( 0 )
 نشر من قبل John Bray
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Bray and Eldridge (2017), we proposed a simple neutron star kick formula, v kick = alpha (M ejecta / M remnant) + beta to explain the observed 2D velocities of young single neutron stars. Using this kick we found that there is no statistically significant preference for a kick orientation nor for any of the three initial mass function (IMF) slopes tested, and that populations including binary stars reproduced the kick distribution better than single star only populations. However, recent analysis by Janka (2017), prompted us to revisit our basic assumptions and our new analysis has led to revised best-fit kick values of alpha=100 km per second and beta = -170 km per second. The reduction of beta to a negative value is due to using the 2D observed kick velocity distribution rather than the modelled 3D velocity distribution for neutron stars (NS). To further test the validity of the new kick, we have created synthetic populations of runaway star and double neutron star (DNS) binaries at solar metallicity (Z=0.02) using our best-fit kick. We find our new kick values create runaway star velocities and DNS period distributions in agreement with the comparable observational distributions with only the DNS eccentricities in tension with the observations. From our DNS and BH-BH datasets we estimate a predicted DNS merger rate at solar metallicity of 3,864 (+1,570/-2,371) per cubic Gpc per yr and a BH-BH merger rate of 5 (+40/-1) per cubic Gpc per yr.



قيم البحث

اقرأ أيضاً

132 - J. Nordhaus 2011
We present results from a suite of axisymmetric, core-collapse supernova simulations in which hydrodynamic recoil from an asymmetric explosion produces large proto-neutron star (PNS) velocities. We use the adaptive-mesh refinement code CASTRO to self -consistently follow core-collapse, the formation of the PNS and its subsequent acceleration. We obtain recoil velocities of up to 620 km/s at ~1 s after bounce. These velocities are consistent with the observed distribution of pulsar kicks and with PNS velocities obtained in other theoretical calculations. Our PNSs are still accelerating at several hundred km/s at the end of our calculations, suggesting that even the highest velocity pulsars may be explained by hydrodynamic recoil in generic, core-collapse supernovae.
Two low mass neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed from the collapse of an ONeMg core in an electron capture supernova (ECSN) or in an ultra-stripped iron core collapse supernova (FeCCSN). Us ing three different systematically generated sets of equations of state we explore the relationship between the moment of inertia of J0737-3039A and the binding energy of the two low mass neutron stars. We find this relationship, a less strict variant of the recently discovered I-Love-Q relations, is nevertheless more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in an ECSN, no more than 0.06 solar masses could have been lost from the progenitor core, more than four times the mass loss predicted by current supernova modeling. A measurement of the moment of inertia of J0737-3039A to within 10% accuracy from pulsar timing, possible within a decade, can discriminate between formation scenarios such as ECSN or ultra-stripped FeCCSN and, given current constraints on the predicted core mass loss, potentially rule them out. Using the I-Love-Q relations we find that an Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy in a neutron star-neutron star merger at a distance of 200 Mpc, thus obtaining similar constraints on the formation scenarios. Such information on the occurrence of ECSNe is important for population synthesis calculations, especially for estimating the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made modeling the core collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.
We present here a minor modification of our numerical implementation of the Hall effect for the 2D Riemann solver used in Constrained Transport schemes, as described in Marchand et al. (2018). In the previous work, the tests showed that the angular m omentum was not conserved during protostellar collapse simulations, with significant impact. By removing the whistler waves speed from the characteristic speeds of non-magnetic variables in the 1D Riemann solver, we are able to improve the angular momentum conservation in our test-case by one order of magnitude, while keeping the second-order numerical convergence of the scheme. We also reproduce the simulations of Tsukamoto et al. (2015) with consistent resistivities, the three non-ideal MHD effects and initial rotation, and agree with their results. In this case, the violation of angular momentum conservation is negligible in regard to the total angular momentum and the angular momentum of the disk.
Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to $1000$ km/s. We discuss possible mechanisms contributing to these kicks in a systematic effective-field-theory framework. Anomal ies of the underlying microscopic theory result in chiral transport terms in the hydrodynamic description, and we identify these as explanation for the drastic acceleration. In the presence of vorticity or a magnetic field, the chiral transport effects cause neutrino emission along the respective axes. In typical scenarios, the transport effect due to the magnetic field turns out to be strong enough to explain the kicks. Mixed gauge-gravitational anomalies enter in a distinct way, and we also discuss their implications.
Coalescence of binary neutron star give rise to electromagnetic emission, kilonova, powered by radioactive decays of r-process nuclei. Observations of kilonova associated with GW170817 provided unique opportunity to study the heavy element synthesis in the Universe. However, atomic data of r-process elements to decipher the light curves and spectral features of kilonova are not fully constructed yet. In this paper, we perform extended atomic calculations of neodymium (Nd, Z=60) to study the impact of accuracies in atomic calculations to the astrophysical opacities. By employing multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, we calculate energy levels and transition data of electric dipole transitions for Nd II, Nd III, and Nd IV ions. Compared with previous calculations, our new results provide better agreement with the experimental data. The accuracy of energy levels was achieved in the present work 10 %, 3 % and 11 % for Nd II, Nd III and Nd IV, respectively, comparing with the NIST database. We confirm that the overall properties of the opacity are not significantly affected by the accuracies of the atomic calculations. The impact to the Planck mean opacity is up to a factor of 1.5, which affects the timescale of kilonova at most 20 %. However, we find that the wavelength dependent features in the opacity are affected by the accuracies of the calculations. We emphasize that accurate atomic calculations, in particular for low-lying energy levels, are important to provide predictions of kilonova light curves and spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا