ﻻ يوجد ملخص باللغة العربية
We study the effects of rotation on the growth and saturation of the double-diffusive fingering (thermohaline) instability at low Prandtl number. Using direct numerical simulations, we estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Rossby number, inversely proportional to the rotation rate, and the density ratio which measures the relative thermal and compositional stratifications. Within our explored range of parameters, we generally find rotation to have little effect on vertical transport. However, we also present one exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly low Rossby number. The LSV leads to significant enhancement in the fingering transport rates by concentrating compositionally dense downflows at its core. We argue that the formation of such LSVs could be relevant to solving the missing mixing problem in RGB stars.
Typical flows in stellar interiors are much slower than the speed of sound. To follow the slow evolution of subsonic motions, various sound-proof equations are in wide use, particularly in stellar astrophysical fluid dynamics. These low-Mach number e
We present a statistical analysis of turbulent convection in stars within our Reynolds-Averaged Navier Stokes (RANS) framework in spherical geometry which we derived from first principles. The primary results reported in this document include: (1) an
Small-scale dynamo action is often held responsible for the generation of quiet-Sun magnetic fields. We aim to determine the excitation conditions and saturation level of small-scale dynamos in non-rotating turbulent convection at low magnetic Prandt
Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this
Unveiling the evolution of toroidal field instability, known as Tayler instability, is essential to understand the strength and topology of the magnetic fields observed in early-type stars, in the core of the red giants, or in any stellar radiative z