Falling Toward Charged Black Holes


الملخص بالإنكليزية

The growth of the size of operators is an important diagnostic of quantum chaos. In arXiv:1802.01198 [hep-th] it was conjectured that the holographic dual of the size is proportional to the average radial component of the momentum of the particle created by the operator. Thus the growth of operators in the background of a black hole corresponds to the acceleration of the particle as it falls toward the horizon. In this note we will use the momentum-size correspondence as a tool to study scrambling in the field of a near-extremal charged black hole. The agreement with previous work provides a non-trivial test of the momentum-size relation, as well as an explanation of a paradoxical feature of scrambling previously discovered by Leichenauer [arXiv:1405.7365 [hep-th]]. Naively Leichenauers result says that only the non-extremal entropy participates in scrambling. The same feature is also present in the SYK model. In this paper we find a quite different interpretation of Leichenauers result which does not have to do with any decoupling of the extremal degrees of freedom. Instead it has to do with the buildup of momentum as a particle accelerates through the long throat of the Reissner-Nordstrom geometry.

تحميل البحث