ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate cost-aware joint learning and optimization for multi-channel opportunistic spectrum access in a cognitive radio system. We investigate a discrete time model where the time axis is partitioned into frames. Each frame consists of a sensing phase, followed by a transmission phase. During the sensing phase, the user is able to sense a subset of channels sequentially before it decides to use one of them in the following transmission phase. We assume the channel states alternate between busy and idle according to independent Bernoulli random processes from frame to frame. To capture the inherent uncertainty in channel sensing, we assume the reward of each transmission when the channel is idle is a random variable. We also associate random costs with sensing and transmission actions. Our objective is to understand how the costs and reward of the actions would affect the optimal behavior of the user in both offline and online settings, and design the corresponding opportunistic spectrum access strategies to maximize the expected cumulative net reward (i.e., reward-minus-cost). We start with an offline setting where the statistics of the channel status, costs and reward are known beforehand. We show that the the optimal policy exhibits a recursive double threshold structure, and the user needs to compare the channel statistics with those thresholds sequentially in order to decide its actions. With such insights, we then study the online setting, where the statistical information of the channels, costs and reward are unknown a priori. We judiciously balance exploration and exploitation, and show that the cumulative regret scales in O(log T). We also establish a matched lower bound, which implies that our online algorithm is order-optimal. Simulation results corroborate our theoretical analysis.
An opportunistic spectrum access (OSA) for the infrastructure-less (or cognitive ad-hoc) network has received significant attention thanks to emerging paradigms such as the Internet of Things (IoTs) and smart grids. Research in this area has evolved
Owing to the ever-increasing demand in wireless spectrum, Cognitive Radio (CR) was introduced as a technique to attain high spectral efficiency. As the number of secondary users (SUs) connecting to the cognitive radio network is on the rise, there is
Cellular vehicle-to-everything (C-V2X) communication, as a part of 5G wireless communication, has been considered one of the most significant techniques for Smart City. Vehicles platooning is an application of Smart City that improves traffic capacit
Cooperative beamforming across access points (APs) and fronthaul quantization strategies are essential for cloud radio access network (C-RAN) systems. The nonconvexity of the C-RAN optimization problems, which is stemmed from per-AP power and frontha
Network management often relies on machine learning to make predictions about performance and security from network traffic. Often, the representation of the traffic is as important as the choice of the model. The features that the model relies on, a