ترغب بنشر مسار تعليمي؟ اضغط هنا

The Flavor of Cosmology

74   0   0.0 ( 0 )
 نشر من قبل Benjamin Lillard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the cosmology of models in which the standard model Yukawa couplings depend on scalar field(s), often referred to as flavons. We find that thermal corrections of the flavon potential tend to decrease the Yukawa couplings, providing an important input to model-building. Working in the specific framework of Froggatt-Nielsen models, we compute the abundance of flavons in the early universe generated both via freeze-in and from coherent oscillations induced by thermal corrections to their potential, and discuss constraints on flavon models from cosmology. We find that cosmology places important constraints on theories containing flavons even for regions of parameter space inaccessible to collider searches.



قيم البحث

اقرأ أيضاً

If the electroweak Higgs vacuum expectation value $v$ in early universe is $sim 1 %$ higher than its present value $v_0=246$ GeV, the $^7$Li puzzle in BBN and the CMB/$Lambda$CDM tension with late-universe measurements on Hubble parameter are mitigat ed. We propose a model of an axion coupled to the Higgs field, named ``axi-Higgs, with its mass $m_a sim 10^{-30} - 10^{-29},{rm eV}$ and decay constant $f_a sim 10^{17} - 10^{18},{rm GeV}$, to achieve this goal. The axion initial value $a_{rm ini}$ yields an initial $Delta v_{rm ini}/v_0 sim 0.01$ throughout the BBN-recombination epoch and a percent level contribution to the total matter density today. Because of its very large de Broglie wavelength, this axion matter density $omega_a$ suppresses the matter power spectrum, alleviating the CMB/$Lambda$CDM $S_8/sigma_8$ tension with the weak-lensing data. It also explains the recently reported isotropic cosmic birefringence by its coupling with photons. Adding the axion ($m sim 10^{-22},$eV) in the fuzzy dark matter model to the axi-Higgs model allows bigger $Delta v_{rm rec}$ and $omega_a$ to address the Hubble and $S_8/sigma_8$ tensions simultaneously. The model predicts that $Delta v$ may be detected by the spectral measurements of quasars, while its oscillation may be observed in the atomic clock measurements.
The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach of particle colliders. We point out that the observation of a multi-peaked stochastic gravitational wave signal from a series of cosmological phase transitions could well be a unique probe of the mechanism behind flavor hierarchies. To illustrate this point, we show how near future ground- and space-based gravitational wave observatories could detect up to three peaks in the recently proposed $PS^3$ model.
167 - P. Pralavorio 2013
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent syste matic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by natural theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.
The exploration of teleparallel gravity has been done from a dynamical systems point of view in order to be tested against the cosmological evolution currently observed. So far, the proposed autonomous systems have been restrictive over a constant dy namical variable, which contains information related to the dynamics on the $H_0$ value. It is therefore that in this paper we consider a generalization of the dynamical system by imposing a nonconstant degree of freedom over it which allows us to rewrite a generic autonomous dynamical analysis. We describe the treatment of our nonlinear autonomous system by studying the hyperbolic critical points and discuss an interesting phenomenological feature in regards to $H_0$: the possibility to obtain a best-fit value for this parameter in a cosmologically viable $f(T,B)$ model, a mixed power law. This result allows us to present a generic scenario in which it is possible to fix constraints to solve the $H_0$ tension at late times where its linearized solutions are considered.
Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between p article physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earths gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newtons gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the first three minutes and later on in stellar nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا