ترغب بنشر مسار تعليمي؟ اضغط هنا

Single electron transport and possible quantum computing in 2D materials

89   0   0.0 ( 0 )
 نشر من قبل Kuei-Lin Chiu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. L. Chiu




اسأل ChatGPT حول البحث

Two-dimensional (2D) materials for their versatile band structures and strictly 2D nature have attracted considerable attention over the past decade. Graphene is a robust material for spintronics owing to its weak spin-orbit and hyperfine interactions, while monolayer 2H-transition metal dichalcogenides (TMDs) possess a Zeeman effect-like band splitting in which the spin and valley degrees of freedom are nondegenerate. Monolayer 1T-TMDs are 2D topological insulators and are expected to host Majorana zero modes when they are placed in contact with S-wave superconductors. Single electron transport as well as the superconductor proximity effect in these materials are viable for use in both conventional quantum computing and fault-torrent topological quantum computing. In this chapter, we review a selection of theoretical and experimental studies addressing the issues mentioned above. We will focus on: (1) the confinement and manipulation of charges in nanostructures fabricated from graphene and 2H-TMDs (2) 2D materials-based Josephson junctions for possible superconducting qubits (3) the quantum spin Hall states in 1T-TMDs and their topological properties. We aim to outline the current challenges and suggest how future work will be geared towards developing quantum computing devices in 2D materials.



قيم البحث

اقرأ أيضاً

The recent discovery of ferromagnetism in 2D van der Waals (vdw) crystals has generated widespread interest, owing to their potential for fundamental and applied research. Advancing the understanding and applications of vdw magnets requires methods t o quantitatively probe their magnetic properties on the nanoscale. Here, we report the study of atomically thin crystals of the vdw magnet CrI$_3$ down to individual monolayers using scanning single-spin magnetometry, and demonstrate quantitative, nanoscale imaging of magnetisation, localised defects and magnetic domains. We determine the magnetisation of CrI$_3$ monolayers to be $approx16~mu_B/$nm$^2$ and find comparable values in samples with odd numbers of layers, whereas the magnetisation vanishes when the number of layers is even. We also establish that this inscrutable even-odd effect is intimately connected to the material structure, and that structural modifications can induce switching between ferro- and anti-ferromagnetic interlayer ordering. Besides revealing new aspects of magnetism in atomically thin CrI$_3$ crystals, these results demonstrate the power of single-spin scanning magnetometry for the study of magnetism in 2D vdw magnets.
Results from four different approximations to the phonon-assisted quantum adsorption rate for cold atoms on a 2D material are compared and contrasted: (1) a loop expansion (LE) based on the atom-phonon coupling, (2) non-crossing approximation (NCA), (3) independent boson model approximation (IBMA), and (4) a leading-order soft-phonon resummation method (SPR). We conclude that, of the four approximations considered, only the SPR method gives a divergence-free result in the large membrane regime at finite temperature. The other three methods give an adsorption rate that diverges in the limit of an infinite surface.
Quantum computers have the potential to efficiently solve problems in logistics, drug and material design, finance, and cybersecurity. However, millions of qubits will be necessary for correcting inevitable errors in quantum operations. In this scena rio, electron spins in gate-defined silicon quantum dots are strong contenders for encoding qubits, leveraging the microelectronics industry know-how for fabricating densely populated chips with nanoscale electrodes. The sophisticated material combinations used in commercially manufactured transistors, however, will have a very different impact on the fragile qubits. We review here some key properties of the materials that have a direct impact on qubit performance and variability.
Electronic transport properties for single-molecule junctions have been widely measured by several techniques, including mechanically controllable break junctions, electromigration break junctions or by means of scanning tunneling microscopes. In par allel, many theoretical tools have been developed and refined for describing such transport properties and for obtaining numerical predictions. Most prominent among these theoretical tools are those based upon density functional theory. In this review, theory and experiment are critically compared and this confrontation leads to several important conclusions. The theoretically predicted trends nowadays reproduce the experimental findings quite well for series of molecules with a single well-defined control parameter, such as the length of the molecules. The quantitative agreement between theory and experiment usually is less convincing, however. Many reasons for quantitative discrepancies can be identified, from which one may decide that qualitative agreement is the best one may expect with present modeling tools. For further progress, benchmark systems are required that are sufficiently well-defined by experiment to allow quantitative testing of the approximation schemes underlying the theoretical modeling. Several key experiments can be identified suggesting that the present description may even be qualitatively incomplete in some cases. Such key experimental observations and their current models are also discussed here, leading to several suggestions for extensions of the models towards including dynamic image charges, electron correlations, and polaron formation.
We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on donor electron spin qubits in Si semiconductors with an architecture complementary to the original Kanes proposal. We focus on the high-fidelity contro lled-NOT (CNOT) gate and explicitly find its digitized control sequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions. This high-fidelity CNOT gate has an error of about $10^{-6}$, below the error threshold required for fault-tolerant quantum computation, and its operation time of 100ns is about 3 times faster than 297ns of the proposed global control scheme. It also relaxes significantly the stringent distance constraint of two neighboring donor atoms of 10~20nm as reported in the original Kanes proposal to about 30nm in which surface A and J gates may be built with current fabrication technology. The effects of the control voltage fluctuations, the dipole-dipole interaction and the electron spin decoherence on the CNOT gate fidelity are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا