ﻻ يوجد ملخص باللغة العربية
We present a detailed study on the properties of the free energy density at the high temperature by applying the principle of maximum conformality (PMC) scale-setting method within the effective field theory. The PMC utilizes the renormalization group equation recursively to identify the occurrence and pattern of the non-conformal ${beta_i}$-terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free energy density up to $g_s^5$-order level without renormalization scale dependence can be achieved by applying the PMC. We also observe that by using a smaller factorization scale around the effective parameter $m_E$, the PMC prediction shall be consistent with the Lattice QCD prediction derived at the low temperature.
In the paper, we study the $Upsilon(1S)$ leptonic decay width $Gamma(Upsilon(1S)to ell^+ell^-)$ by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum
The Higgs boson decay channel, $Htogammagamma$, is one of the most important channels for probing the properties of the Higgs boson. In the paper, we reanalyze its decay width by using the QCD corrections up to $alpha_s^4$-order level. The principle
We present a comprehensive and self-consistent analysis for the thrust distribution by using the Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running coupling using PMC via renormalization group equation, the
The next-to-next-to-leading order (NNLO) pQCD prediction for the $gammagamma^* to eta_c$ form factor was evaluated in 2015 using nonrelativistic QCD (NRQCD). A strong discrepancy between the NRQCD prediction and the BaBar measurements was observed. U
A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale $mu$ of the running coupling $alpha_s(mu^2).$ The purpose of the running coupling in any gauge theory is to sum all terms involvi