ﻻ يوجد ملخص باللغة العربية
The stiff problem is concerned with a thermal conduction model with a singular barrier of zero volume. In this paper, we shall build the phase transitions for the stiff problems in one-dimensional space. It turns out that every phase transition definitely depends on the total thermal resistance of the barrier, and the three phases correspond to the so-called impermeable pattern, semi-permeable pattern and permeable pattern of thermal conduction respectively. For each pattern, the related boundary condition of the flux at the barrier is also derived. Mathematically, we shall introduce and explore the so-called snapping out Markov process, which is the probabilistic counterpart of semi-permeable pattern in the stiff problem.
This paper establishes explicit solutions for fractional diffusion problems on bounded domains. It also gives stochastic solutions, in terms of Markov processes time-changed by an inverse stable subordinator whose index equals the order of the fracti
In the context of a metric measure Dirichlet space satisfying volume doubling and Poincare inequality, we prove the parabolic Harnack inequality for weak solutions of the heat equation associated with local nonsymmetric bilinear forms. In particular,
We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planner Sierpinski carpets by allowing the small cells to live off the $1/k$ grids. The intersection of two cells can be a line se
We study harmonic functions for general Dirichlet forms. First we review consequences of Fukushimas ergodic theorem for the harmonic functions in the domain of the $ L^{p} $ generator. Secondly we prove analogues of Yaus and Karps Liouville theorems
In this paper we will study a stiff problem in two-dimensional space and especially its probabilistic counterpart. Roughly speaking, the heat equation with a parameter $varepsilon>0$ is under consideration: [ partial_t u^varepsilon(t,x)=frac{1}{2} ab