Multi-Level Steiner Trees


الملخص بالإنكليزية

In the classical Steiner tree problem, given an undirected, connected graph $G=(V,E)$ with non-negative edge costs and a set of emph{terminals} $Tsubseteq V$, the objective is to find a minimum-cost tree $E subseteq E$ that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of $rho = ln(4)+varepsilon < 1.39$. In this paper, we study a natural generalization, the emph{multi-level Steiner tree} (MLST) problem: given a nested sequence of terminals $T_{ell} subset dots subset T_1 subseteq V$, compute nested trees $E_{ell}subseteq dots subseteq E_1subseteq E$ that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two simple $O(ell)$-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most $2ell$ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present various integer linear programming (ILP) formulations for the MLST problem, and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to $ell=100$ levels, which is sufficient for most applications such as network visualization or designing multi-level infrastructure.

تحميل البحث