ﻻ يوجد ملخص باللغة العربية
A central goal of evolutionary biology is to explain the origins and distribution of diversity across life. Beyond species or genetic diversity, we also observe diversity in the circuits (genetic or otherwise) underlying complex functional traits. However, while the theory behind the origins and maintenance of genetic and species diversity has been studied for decades, theory concerning the origin of diverse functional circuits is still in its infancy. It is not known how many different circuit structures can implement any given function, which evolutionary factors lead to different circuits, and whether the evolution of a particular circuit was due to adaptive or non-adaptive processes. Here, we use digital experimental evolution to study the diversity of neural circuits that encode motion detection in digital (artificial) brains. We find that evolution leads to an enormous diversity of potential neural architectures encoding motion detection circuits, even for circuits encoding the exact same function. Evolved circuits vary in both redundancy and complexity (as previously found in genetic circuits) suggesting that similar evolutionary principles underlie circuit formation using any substrate. We also show that a simple (designed) motion detection circuit that is optimally-adapted gains in complexity when evolved further, and that selection for mutational robustness led this gain in complexity.
By challenging E. coli with sublethal norfloxacin for 10 days, Henry Lee and James Collins suggests the bacterial altruism leads to the population-wide resistance. By detailedly analyzing experiment data, we suggest that bacterial cooperation leads t
Community ecology has traditionally relied on the competitive exclusion principle, a piece of common wisdom in conceptual frameworks developed to describe species assemblages. Key concepts in community ecology, such as limiting similarity and niche p
Cancer cell population dynamics often exhibit remarkably replicable, universal laws despite their underlying heterogeneity. Mechanistic explanations of universal cell population growth remain partly unresolved to this day, whereby population feedback
Flies that walk in a covered planar arena on straight paths avoid colliding with each other, but which of the two flies stops is not random. High-throughput video observations, coupled with dedicated experiments with controlled robot flies have revea
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dyna