ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant planets: good neighbors for habitable worlds?

58   0   0.0 ( 0 )
 نشر من قبل Nikolaos Georgakarakos Ph.D.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets towards Earth-analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well characterized exoplanetary systems known to date that host a main sequence star and a giant planet we show that the presence of giant neighbors can reduce a terrestrial planets chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.



قيم البحث

اقرأ أيضاً

Planned astronomical observatories of the 2020s will be capable of obtaining reflected light photometry and spectroscopy of cool extrasolar giant planets. Here we explain that such data are valuable both for understanding the origin and evolution of giant planets as a whole and for preparing for the interpretation of similar datasets from potentially habitable extrasolar terrestrial planets in the decades to follow.
We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 M$_{E}$ and 5 M$_{E}$ around circumbinary stars of various spectral type combinations. Specifically, we consider binary systems with host spectral types F-F, F-G, F-K, F-M, G-G, G-K, G-M, K-K, K-M and M-M. Scaling the background N2 atmospheric pressure with the radius of the planet, we find that the inner edge of the HZ moves inwards towards the star for 5ME compared to 0.1ME planets for all spectral types. This is because the water-vapor column depth is smaller for larger planets and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. The outer edge of the HZ changes little due to competing effects of the albedo and greenhouse effect. While these results are broadly consistent with the trend of single star HZ results for different mass planets, there are significant differences between single star and binary star systems for the inner edge of the HZ. Interesting combinations of stellar pairs from our 1-D model results can be used to explore for in-depth climate studies with 3-D climate models. We identify a common HZ stellar flux domain for all circumbinary spectral types
73 - R.F. Diaz 2016
We report the discovery of three new substellar companions to solar-type stars, HD191806, HD214823, and HD221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with ob servations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the star HD191806 is experiencing a secular acceleration of over 11 ms per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD221585, whose companion must be substellar. With the exception of HD191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop.
298 - Tristan Guillot 2014
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion o f the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
189 - M. Postman , W. Traub , J. Krist 2009
The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an externa l occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا