ترغب بنشر مسار تعليمي؟ اضغط هنا

Witnessing Opto-Mechanical Entanglement with Photon-Counting

119   0   0.0 ( 0 )
 نشر من قبل Nicolas Sangouard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to coherently control mechanical systems with optical fields has made great strides over the past decade, and now includes the use of photon counting techniques to detect the non-classical nature of mechanical states. These techniques may soon be used to perform an opto-mechanical Bell test, hence highlighting the potential of cavity opto-mechanics for device-independent quantum information processing. Here, we propose a witness which reveals opto-mechanical entanglement without any constraint on the global detection efficiencies in a setup allowing one to test a Bell inequality. While our witness relies on a well-defined description and correct experimental calibration of the measurements, it does not need a detailed knowledge of the functioning of the opto-mechanical system. A feasibility study including dominant sources of noise and loss shows that it can readily be used to reveal opto-mechanical entanglement in present-day experiments with photonic crystal nanobeam resonators.



قيم البحث

اقرأ أيضاً

387 - R. Ghobadi , S. Kumar , B. Pepper 2014
We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, on e can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.
Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which u tilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase superresolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.
The purpose of an entanglement witness experiment is to certify the creation of an entangled state from a finite number of trials. The statistical confidence of such an experiment is typically expressed as the number of observed standard deviations o f witness violations. This method implicitly assumes that the noise is well-behaved so that the central limit theorem applies. In this work, we propose two methods to analyze witness experiments where the states can be subject to arbitrarily correlated noise. Our first method is a rejection experiment, in which we certify the creation of entanglement by rejecting the hypothesis that the experiment can only produce separable states. We quantify the statistical confidence by a p-value, which can be interpreted as the likelihood that the observed data is consistent with the hypothesis that only separable states can be produced. Hence a small p-value implies large confidence in the witnessed entanglement. The method applies to general witness experiments and can also be used to witness genuine multipartite entanglement. Our second method is an estimation experiment, in which we estimate and construct confidence intervals for the average witness value. This confidence interval is statistically rigorous in the presence of correlated noise. The method applies to general estimation problems, including fidelity estimation. To account for systematic measurement and random setting generation errors, our model takes into account device imperfections and we show how this affects both methods of statistical analysis. Finally, we illustrate the use of our methods with detailed examples based on a simulation of NV centers.
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latters susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the m otion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of $unit{1.9 cdot 10^{-16}}{metre/sqrt{hertz}}$ around the membranes fundamental oscillation mode at $unit{133}{kilohertz}$ has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.
The final goal of quantum hypothesis testing is to achieve quantum advantage over all possible classical strategies. In the protocol of quantum reading this advantage is achieved for information retrieval from an optical memory, whose generic cell st ores a bit of information in two possible lossy channels. For this protocol, we show, theoretically and experimentally, that quantum advantage is obtained by practical photon-counting measurements combined with a simple maximum-likelihood decision. In particular, we show that this receiver combined with an entangled two-mode squeezed vacuum source is able to outperform any strategy based on statistical mixtures of coherent states for the same mean number of input photons. Our experimental findings demonstrate that quantum entanglement and simple optics are able to enhance the readout of digital data, paving the way to real applications of quantum reading and with potential applications for any other model that is based on the binary discrimination of bosonic loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا