ترغب بنشر مسار تعليمي؟ اضغط هنا

The structure of evolved representations across different substrates for artificial intelligence

91   0   0.0 ( 0 )
 نشر من قبل Christoph Adami
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial neural networks (ANNs), while exceptionally useful for classification, are vulnerable to misdirection. Small amounts of noise can significantly affect their ability to correctly complete a task. Instead of generalizing concepts, ANNs seem to focus on surface statistical regularities in a given task. Here we compare how recurrent artificial neural networks, long short-term memory units, and Markov Brains sense and remember their environments. We show that information in Markov Brains is localized and sparsely distributed, while the other neural network substrates smear information about the environment across all nodes, which makes them vulnerable to noise.



قيم البحث

اقرأ أيضاً

While Moores law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architecture s that promise to achieve the flexibility and computational efficiency of biological neural processing systems. Within this context, neuromorphic intelligence represents a paradigm shift in computing based on the implementation of spiking neural network architectures tightly co-locating processing and memory. In this paper, we provide a comprehensive overview of the field, highlighting the different levels of granularity present in existing silicon implementations, comparing approaches that aim at replicating natural intelligence (bottom-up) versus those that aim at solving practical artificial intelligence applications (top-down), and assessing the benefits of the different circuit design styles used to achieve these goals. First, we present the analog, mixed-signal and digital circuit design styles, identifying the boundary between processing and memory through time multiplexing, in-memory computation and novel devices. Next, we highlight the key tradeoffs for each of the bottom-up and top-down approaches, survey their silicon implementations, and carry out detailed comparative analyses to extract design guidelines. Finally, we identify both necessary synergies and missing elements required to achieve a competitive advantage for neuromorphic edge computing over conventional machine-learning accelerators, and outline the key elements for a framework toward neuromorphic intelligence.
Can reproduction alone in the context of survival produce intelligence in our machines? In this work, self-replication is explored as a mechanism for the emergence of intelligent behavior in modern learning environments. By focusing purely on surviva l, while undergoing natural selection, evolved organisms are shown to produce meaningful, complex, and intelligent behavior, demonstrating creative solutions to challenging problems without any notion of reward or objectives. Atari and robotic learning environments are re-defined in terms of natural selection, and the behavior which emerged in self-replicating organisms during these experiments is described in detail.
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with A I systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.
The Internet of Things (IoT) and edge computing applications aim to support a variety of societal needs, including the global pandemic situation that the entire world is currently experiencing and responses to natural disasters. The need for real-t ime interactive applications such as immersive video conferencing, augmented/virtual reality, and autonomous vehicles, in education, healthcare, disaster recovery and other domains, has never been higher. At the same time, there have been recent technological breakthroughs in highly relevant fields such as artificial intelligence (AI)/machine learning (ML), advanced communication systems (5G and beyond), privacy-preserving computations, and hardware accelerators. 5G mobile communication networks increase communication capacity, reduce transmission latency and error, and save energy -- capabilities that are essential for new applications. The envisioned future 6G technology will integrate many more technologies, including for example visible light communication, to support groundbreaking applications, such as holographic communications and high precision manufacturing. Many of these applications require computations and analytics close to application end-points: that is, at the edge of the network, rather than in a centralized cloud. AI techniques applied at the edge have tremendous potential both to power new applications and to need more efficient operation of edge infrastructure. However, it is critical to understand where to deploy AI systems within complex ecosystems consisting of advanced applications and the specific real-time requirements towards AI systems.
Algorithms implementing populations of agents which interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here a swarm system, called Databionic swarm (DBS), is introduce d which is able to adapt itself to structures of high-dimensional data characterized by distance and/or density-based structures in the data space. By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering. The swarm omits the usage of a global objective function and is parameter-free because it searches for the Nash equilibrium during its annealing process. To our knowledge, DBS is the first swarm combining these approaches. Its clustering can outperform common clustering methods such as K-means, PAM, single linkage, spectral clustering, model-based clustering, and Ward, if no prior knowledge about the data is available. A central problem in clustering is the correct estimation of the number of clusters. This is addressed by a DBS visualization called topographic map which allows assessing the number of clusters. It is known that all clustering algorithms construct clusters, irrespective of the data set contains clusters or not. In contrast to most other clustering algorithms, the topographic map identifies, that clustering of the data is meaningless if the data contains no (natural) clusters. The performance of DBS is demonstrated on a set of benchmark data, which are constructed to pose difficult clustering problems and in two real-world applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا