ترغب بنشر مسار تعليمي؟ اضغط هنا

$f(R, R_{mu u}^2)$ at one loop

128   0   0.0 ( 0 )
 نشر من قبل Nobuyoshi Ohta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the one-loop divergences in a theory of gravity with Lagrangian of the general form $f(R,R_{mu u}R^{mu u})$, on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.



قيم البحث

اقرأ أيضاً

We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher curvature gravity theory. In the Einstein gravity, matter scattering is shown not to satisfy tree unitarity at high energy. Among a few po ssible directions to cure unitarity (i.e. UV completion of Einstein gravity), string theory, modified gravity, inclusion of high-mass/high-spin states, we take $R_{mu u}^2$ gravity coupled to matter. We show that the matter scattering with graviton interactions satisfies the unitarity bound at high energy, in contrast with the Einstein gravity. The difference in unitarity property of the two gravity theories is due to that in the UV behavior of the propagator and is probably connected to that in another UV property, namely renormalizability property of the two.
We investigate whether the new horizon first law still holds in $f(R,R^{mu u}R_{mu u})$ theory. For this complicated theory, we first determine the entropy of black hole via Wald method, then we derive the energy by using the new horizon first law, t he degenerate Legendre transformation, and the gravitational field equations. For application, we consider the quadratic-curvature gravity and firstly calculate the entropy and the energy for a static spherically symmetric black hole, which reduces to the results obtained in literatures for a Schwarzschild-(A)dS black hole.
We show that in the quadratic curvature theory of gravity, or simply $R_{mu u} ^2$ gravity, the tree-level unitariy bound (tree unitarity) is violated in the UV region but an analog for $S$-matrix unitarity ($SS^{dagger} = 1$) is satisfied. This the ory is renormalizable, and hence the failure of tree unitarity is a counter example of Llewellyn Smiths conjecture on the relation between them. We have recently proposed a new conjecture that $S$-matrix unitarity gives the same conditions as renormalizability. We verify that $S$-matrix unitarity holds in the matter-graviton scattering at tree level in the $R_{mu u} ^2$ gravity, demonstrating our new conjecture.
Dynamical behavior and future singularities of $f(R, T,R_{mu u}T^{mu u})$ gravitational theory are investigated. This gravitational model is a more complete form of the $f(R,T)$ gravity which can offer new dynamics for the universe. We investigate th is gravitational theory for the case $f = R + alpha R_{mu u}T^{mu u}$ using the method of autonomous dynamical systems and by assuming an interaction between matter and dark energy. The fixed points are identified and the results are consistent with standard cosmology and show that for small $alpha$, the radiation dominated era is an unstable fixed point of the theory and the universe will continue its procedure toward matter era which is a saddle point of the theory and allows the evolution to dark energy dominated universe. Finally the dark energy dominated epoch is a stable fixed point and will be the late time attractor for the universe. We also consider future singularities for the two $f = R + alpha R_{mu u}T^{mu u}$ and $f = R +alpha RR_{mu u}T^{mu u}$ cases and for $w = 0,dfrac{1}{3},1$ and $-1$. Our results show that for the case of $f = R + alpha R_{mu u}T^{mu u}$, the future singularities of the universe will happen in the same condition as do for the Einstein-Hilbert FRW universe. However, a new type of singularity is obtained for $f = R +alpha RR_{mu u}T^{mu u}$ that is captured by $trightarrow t_s; a rightarrow a_s; rhorightarrow infty;$ and $ |p| rightarrow 0$.
In this paper, we investigate irregularities in a cylindrical self-gravitating system which contains the properties of an imperfect matter and electromagnetic field. For $f(R,T,Q)$ theory, in which $R$ represents the Ricci scalar and $T$ shows the tr ace of matter stress-energy tensor while $Qequiv R_{gammadelta}T^{gammadelta}$, the field equations containing electric charge, mass functions and Darmois junction conditions at the hypersurface are examined. We have adopted new definition of complexity introduced by Herrera cite{herrera2018new}, generalized it for the static charged cylindrically symmetric case in $f(R,T,Q)$ theory by performing a detailed analysis on the orthogonal splitting of the Riemann curvature tensor. One of the effective scalars, $Y_{TF}$, has been recognized as a complexity factor. This factor is comprised of certain physical components of the fluid such as irregularity in energy density, locally pressure anisotropy and electric charge (arranged in a specific way). In addition, the effects of extra curvature terms of modified gravity are examined by making the relations among the complexity factor, Weyl scalar and Tolman mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا