ترغب بنشر مسار تعليمي؟ اضغط هنا

The $U(n)$ Gelfand-Zeitlin system as a tropical limit of Ginzburg-Weinstein diffeomorphisms

115   0   0.0 ( 0 )
 نشر من قبل Jeremy Lane
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Ginzburg-Weinstein diffeomorphism $mathfrak{u}(n)^* to U(n)^*$ of Alekseev-Meinrenken admits a scaling tropical limit on an open dense subset of $mathfrak{u}(n)^*$. The target of the limit map is a product $mathcal{C} times T$, where $mathcal{C}$ is the interior of a cone, $T$ is a torus, and $mathcal{C} times T$ carries an integrable system with natural action-angle coordinates. The pull-back of these coordinates to $mathfrak{u}(n)^*$ recovers the Gelfand-Zeitlin integrable system of Guillemin-Sternberg. As a by-product of our proof, we show that the Lagrangian tori of the Flaschka-Ratiu integrable system on the set of upper triangular matrices meet the set of totally positive matrices for sufficiently large action coordinates.



قيم البحث

اقرأ أيضاً

In this paper, we show that every singular fiber of the Gelfand--Cetlin system on coadjoint orbits of unitary groups is a smooth isotropic submanifold which is diffeomorphic to a $2$-stage quotient of a compact Lie group by free actions of two other compact Lie groups. In many cases, these singular fibers can be shown to be homogeneous spaces or even diffeomorphic to compact Lie groups. We also give a combinatorial formula for computing the dimensions of all singular fibers, and give a detailed description of these singular fibers in many cases, including the so-called (multi-)diamond singularities. These (multi-)diamond singular fibers are degenerate for the Gelfand--Cetlin system, but they are Lagrangian submanifolds diffeomorphic to direct products of special unitary groups and tori. Our methods of study are based on different ideas involving complex ellipsoids, Lie groupoids, and also general ideas coming from the theory of singularities of integrable Hamiltonian systems.
121 - Oleg Lazarev 2018
We prove that the minimum number of critical points of a Weinstein Morse function on a Weinstein domain of dimension at least six is at most two more than the minimum number of critical points of a smooth Morse function on that domain; if the domain has non-zero middle-dimensional homology, these two numbers agree. There is also an upper bound on the number of gradient trajectories between critical points in smoothly trivial Weinstein cobordisms. As an application, we show that the number of generators for the Grothendieck group of the wrapped Fukaya category is at most the number of generators for singular cohomology and hence vanishes for any Weinstein ball. We also give a topological obstruction to the existence of finite-dimensional representations of the Chekanov-Eliashberg DGA of Legendrian spheres.
For any high-dimensional Weinstein domain and finite collection of primes, we construct a Weinstein subdomain whose wrapped Fukaya category is a localization of the original wrapped Fukaya category away from the given primes. When the original domain is a cotangent bundle, these subdomains form a decreasing lattice whose order cannot be reversed. Furthermore, we classify the possible wrapped Fukaya categories of Weinstein subdomains of a cotangent bundle of a simply connected, spin manifold, showing that they all coincide with one of these prime localizations. In the process, we describe which twisted complexes in the wrapped Fukaya category of a cotangent bundle of a sphere are isomorphic to genuine Lagrangians.
134 - Augustin Banyaga 2007
Using a Hodge decomposition of symplectic isotopies on a compact symplectic manifold $(M,omega)$, we construct a norm on the identity component in the group of all symplectic diffeomorphisms of $(M,omega)$ whose restriction to the group $Ham(M,omega) $ of hamiltonian diffeomorphisms is bounded from above by the Hofer norm. Moreover, $Ham(M,omega)$ is closed in $Symp(M,omega)$ equipped with the topology induced by the extended norm. We give an application to the $C^0$ symplectic topology. We also discuss extensions of Ohs spectral distance.
140 - Oleg Lazarev 2019
We prove that geometric intersections between Weinstein handles induce algebraic relations in the wrapped Fukaya category, which we use to study the Grothendieck group. We produce a surjective map from middle-dimensional singular cohomology to the Gr othendieck group, show that the geometric acceleration map to symplectic cohomology factors through the categorical Dennis trace map, and introduce a Viterbo functor for $C^0$-close Weinstein hypersurfaces, which gives an obstruction for Legendrians to be $C^0$-close. We show that symplectic flexibility is a geometric manifestation of Thomasons correspondence between split-generating subcategories and subgroups of the Grothendieck group, which we use to upgrade Abouzaids split-generation criterion to a generation criterion for Weinstein domains. Thomasons theorem produces exotic presentations for certain categories and we give geometric analogs: exotic Weinstein presentations for standard cotangent bundles and Legendrians whose Chekanov-Eliashberg algebras are not quasi-isomorphic but are derived Morita equivalent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا