ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Multipolar Instability in URu$_2$Si$_2$ Studied by Ultrasonic Measurements under Pulsed Magnetic Field

94   0   0.0 ( 0 )
 نشر من قبل Tatsuya Yanagisawa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elastic properties of URu$_2$Si$_2$ in the high-magnetic field region above 40 T, over a wide temperature range from 1.5 to 120 K, were systematically investigated by means of high-frequency ultrasonic measurements. The investigation was performed at high magnetic fields to better investigate the innate bare 5$f$-electron properties, since the unidentified electronic thermodynamic phase of unknown origin, so called `hidden order(HO) and associated hybridization of conduction and $f$-electron ($c$-$f$ hybridization) are suppressed at high magnetic fields. From the three different transverse modes we find contrasting results; both the $Gamma_4$(B$_{rm 2g}$) and $Gamma_5$(E$_{rm g}$) symmetry modes $C_{66}$ and $C_{44}$ show elastic softening that is enhanced above 30 T, while the characteristic softening of the $Gamma_3$(B$_{rm 1g}$) symmetry mode $(C_{11}-C_{12})/2$ is suppressed in high magnetic fields. These results underscore the presence of a hybridization-driven $Gamma_3$(B$_{rm 1g}$) lattice instability in URu$_2$Si$_2$. However, the results from this work cannot be explained by using existing crystalline-electric field (CEF) schemes applied to the quadrupolar susceptibility in a local $5f^2$ configuration. Instead, we present an analysis based on a band Jahn-Teller effect.



قيم البحث

اقرأ أيضاً

We present measurements of the resistivity $rho_{x,x}$ of URu2Si2 high-quality single crystals in pulsed high magnetic fields up to 81~T at a temperature of 1.4~K and up to 60~T at temperatures down to 100~mK. For a field textbf{H} applied along the magnetic easy-axis textbf{c}, a strong sample-dependence of the low-temperature resistivity in the hidden-order phase is attributed to a high carrier mobility. The interplay between the magnetic and orbital properties is emphasized by the angle-dependence of the phase diagram, where magnetic transition fields and crossover fields related to the Fermi surface properties follow a 1/$costheta$-law, $theta$ being the angle between textbf{H} and textbf{c}. For $mathbf{H}parallelmathbf{c}$, a crossover defined at a kink of $rho_{x,x}$, as initially reported in [Shishido et al., Phys. Rev. Lett. textbf{102}, 156403 (2009)], is found to be strongly sample-dependent: its characteristic field $mu_0H^*$ varies from $simeq20$~T in our best sample with a residual resistivity ratio RRR of $225$ to $simeq25$~T in a sample with a RRR of $90$. A second crossover is defined at the maximum of $rho_{x,x}$ at the sample-independent characteristic field $mu_0H_{rho,max}^{LT}simeq30$~T. Fourier analyzes of SdH oscillations show that $H_{rho,max}^{LT}$ coincides with a sudden modification of the Fermi surface, while $H^*$ lies in a regime where the Fermi surface is smoothly modified. For $mathbf{H}parallelmathbf{a}$, i) no phase transition is observed at low temperature and the system remains in the hidden-order phase up to 81~T, ii) quantum oscillations surviving up to 7~K are related to a new and almost-spherical orbit - for the first time observed here - at the frequency $F_lambdasimeq1400$~T and associated with a low effective mass $m^*_lambda=(1pm0.5)cdot m_0$, and iii) no Fermi surface modification occurs up to 81~T.
We present a study of transport properties of the heavy fermion URu$_2$Si$_2$ in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity , Hall and Nernst data outlines the reconstruction of the Fermi surface in the temperature-field phase diagram. The zero-field ground state is a compensated heavy-electron semi-metal, which is destroyed by magnetic field through a cascade of field-induced transitions. Above 40 T, URu$_2$Si$_2$ appears to be a polarized heavy fermions metal with a large density of carriers whose effective mass rapidly decreases with increasing magnetic polarization.
175 - W. Knafo , D. Aoki , G.W. Scheerer 2017
A review of recent state-of-the-art pulsed field experiments performed on URu$_2$Si$_2$ under a magnetic field applied along its easy magnetic axis $mathbf{c}$ is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neut ron diffraction experiments are presented, permitting to emphasize the relationship between Fermi surface reconstructions, the destruction of the hidden-order and the appearance of a spin-density wave state in a high magnetic field.
We report $^{29}$Si NMR measurements in single crystals and aligned powders of URu$_2$Si$_2$ in the hidden order and paramagnetic phases. The spin-lattice-relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic pha se. We find evidence for partial suppression of the density of states below 30 K, and analyze the data in terms of a two component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden order transition $T_{HO}$ and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order.
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam ples include the quantizing effects of high magnetic fields upon the 2D electron gas, the collective sliding of charge density waves subject to high electric fields, and perhaps most notably the macroscopic phase coherence that enables superconductors to carry dissipationless currents. Here we reveal that the low temperature hidden order state of URu$_2$Si$_2$ exhibits just such a connection between the quantum and macroscopic worlds -- under large voltage bias we observe non-linear contributions to the conductivity that are directly analogous to the manifestation of phase slips in one-dimensional superconductors [1], suggesting a complex order parameter for hidden order
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا