ﻻ يوجد ملخص باللغة العربية
We have addressed the study of non-leptonic weak decays of heavy hadrons ($Lambda_b, Lambda_c, B$ and $D$), with external and internal emission to give two final hadrons, taking into account the spin-angular momentum structure of the mesons and baryons produced. A detailed angular momentum formulation is developed which leads to easy final formulas. By means of them we have made predictions for a large amount of reactions, up to a global factor, common to many of them, that we take from some particular data. Comparing the theoretical predictions with the experimental data, the agreement found is quite good in general and the discrepancies should give valuable information on intrinsic form factors, independent of the spin structure studied here. The formulas obtained are also useful in order to evaluate meson-meson or meson-baryon loops, for instance of $B$ decays, in which one has PP, PV, VP or VV intermediate states, with P for pseudoscalar mesons and V for vector meson and lay the grounds for studies of decays into three final particles.
We evaluate ratios of the $chi_{c1}$ decay rates to $eta$ ($eta, K^-$) and one of the $f_0(1370)$, $f_0(1710)$, $f_2(1270)$, $f_2(1525)$, $K^{*}_2(1430)$ resonances, which in the local hidden gauge approach are dynamically generated from the vector-v
Mass dependences of the total production rates per hadronic Z decay of all light-flavour hadrons measured so far at LEP are extrapolated to the zero mass limit (m=0) using phenomenological laws of hadron production related to the spin, isospin, stran
We consider the fidelity of the vector meson dominance (VMD) assumption as an instrument for relating the electromagnetic vector-meson production reaction $e + p to e^prime + V + p$ to the purely hadronic process $V + p to V+p$. Analyses of the photo
A symmetry-preserving regularisation of a vector$times$vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $pi$, $K$, $D_{(s)}$, $B_{(s,c)}$ initial states. The framework is characterised by a
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized