ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study on thermoelectric properties of half-Heusler compounds CoMSb(M=Sc, Ti, V, Cr, and Mn)

65   0   0.0 ( 0 )
 نشر من قبل Susumu Minami
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed systematic density functional calculations and evaluated thermoelectric properties, See- beck coefficient and anomalous Nernst coefficient of half-Heusler comounds CoMSb(M=Sc, Ti, V, Cr, and Mn). The carrier concentration dependence of Seebeck coefficients in nonmagnetic compounds are in good agreement with experimental values. We found that the half-metallic ferromagnetic CoMnSb show large anomalous Nernst effect originating from Berry curvature at the Brillouin zone boundary. These results help to understanding for the mechanism of large anomalous Nernst coefficient and give us a clue to design high performance magnetic thermoelectric materials.



قيم البحث

اقرأ أيضاً

We present a study of the thermodynamic and physical properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the exper imental data. The electronic density of states and band structures are calculated to understand the bonding mechanism in the three compounds. The indirect band gap of BiTl9Te6 and SbTl9Te6 compounds are found to be equal to 0.256 eV and 0.374 eV, respectively. The spin-orbit coupling has important effects on the electronic structure of the two semiconducting compounds and should therefore be included for a good numerical description of these materials. The elastic constants of the three compounds have been calculated, and the bulk modulus, shear modulus, and youngs modulus have been determined. The change from ductile to brittle behavior after Sb or Bi alloying is related to the change of the electronic properties. Finally, the Debye temperature, longitudinal, transverse and average sound velocities have been obtained.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
The strongly constrained and appropriately normed (SCAN) semi-local functional for exchange-correlation is deployed to study the ground-state properties of ternary Heusler alloys transforming martensitically. The calculations are performed for ferrom agnetic, ferrimagnetic, and antiferromagnetic phases. Comparisons between SCAN and generalized gradient approximation (GGA) are discussed. We find that SCAN yields smaller lattice parameters and higher magnetic moments compared to the GGA corresponding values for both austenite and martensite phases. Furthermore, in the case of ferromagnetic and non-magnetic Heusler compounds, GGA and SCAN display similar trends in the total energy as a function of lattice constant and tetragonal ratio. However, for some ferrimagnetic Mn-rich Heusler compounds, different magnetic ground states are found within GGA and SCAN.
The Ohmic spin diode (OSD) is a recent concept in spintronics, which is based on half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to realize the OSD for room temperature applica tions as these materials possess very high Curie temperatures as well as half-metallic and spin-gapless semiconducting behavior within the same family. Using state-of-the-art first-principles calculations combined with the non-equilibrium Greens function method we design four different OSDs based on half-metallic and spin-gapless semiconducting quaternary Heusler compounds. All four OSDs exhibit linear current-voltage ($I-V$) characteristics with zero threshold voltage $V_T$. We show that these OSDs possess a small leakage current, which stems from the overlap of the conduction and valence band edges of opposite spin channels around the Fermi level in the SGS electrodes. The obtained on/off current ratios vary between $30$ and $10^5$. Our results can pave the way for the experimental fabrication of the OSDs within the family of ordered quaternary Heusler compounds.
A half-Heusler material FeNb$_{0.8}$Ti$_{0.2}$Sb has been identified as a promising thermoelectric material due to its excellent thermoelectric performance at high temperatures. The origins of the efficient thermoelectric performance are investigated through a series of low-temperature (2 - 400 K) measurements. The high data coherence of the low and high temperatures is observed. An optimal and nearly temperature-independent carrier concentration is identified, which is ideal for the power factor. The obtained single type of hole carrier is also beneficial to the large Seebeck coefficient. The electronic thermal conductivity is found to be comparable to the lattice thermal conductivity and becomes the dominant component above 200 K. These findings again indicate that electron scattering plays a key role in the electrical and thermal transport properties. The dimensionless figure of merit is thus mainly governed by the electronic properties. These effects obtained at low temperatures with the avoidance of possible thermal fluctuations together offer the physical origin for the excellent thermoelectric performance in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا