ترغب بنشر مسار تعليمي؟ اضغط هنا

A physical model of the broadband continuum of AGN and its implications for the UV/X relation and optical variability

73   0   0.0 ( 0 )
 نشر من قبل Aya Kubota
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new spectral model for the broadband spectral energy distribution (SED) of Active Galactic Nuclei (AGN). This includes an outer standard disc, an inner warm Comptonising region to produce the soft X-ray excess and a hot corona. We tie these together energetically by assuming Novikov-Thorne emissivity, and use this to define a size scale for the hard X-ray corona as equal to the radius where the remaining accretion energy down to the black hole can power the observed X-ray emission. We test this on three AGN with well defined SEDs as well as on larger samples to show that the average hard X-ray luminosity is always approximately a few percent of the Eddington luminosity across a large range of Eddington ratio. As a consequence, the radial size scale required for gravity to power the X-ray corona has to decrease with increasing Eddington fraction. For the first time we hardwire this into the spectral models, and set the hard X-ray spectral index self consistently from the ratio of the hard X-ray luminosity to intercepted seed photon luminosity from the disc. This matches the observed correlation of steeper spectral index with increasing Eddington ratio, as well as reproducing the observed tight UV/X relation of quasars. We also include the reprocessed emission produced by the hot inner flow illuminating the warm Comptonisation and standard disc regions and show that this predicts a decreasing amount of optical variability with increasing Eddington ratio as observed, though additional processes may also be required to explain the observed optical variability.



قيم البحث

اقرأ أيضاً

The detection of new clusters of galaxies or the study of known clusters of galaxies in X-rays can be complicated by the presence of X-ray point sources, the majority of which will be active galactic nuclei (AGN). This can be addressed by combining o bservations from a high angular resolution observatory (such as Chandra) with deeper data from a more sensitive observatory that may not be able to resolve the AGN (like XMM). However, this approach is undermined if the AGN varies in flux between the epochs of the observations. To address this we measure the characteristic X-ray variability of serendipitously detected AGN in 70 pairs of Chandra observations, separated by intervals of between one month and thirteen years. After quality cuts, the full sample consists of 1511 sources, although the main analysis uses a subset of 416 sources selected on the geometric mean of their flux in the pairs of observations, which eliminates selection biases. We find a fractional variability that increases with increasing interval between observations, from about 0.25 for observations separated by tens of days up to about 0.45 for observations separated by $sim 10$ years. As a rule of thumb, given the precise X-ray flux of a typical AGN at one epoch, its flux at a second epoch some years earlier or later can be predicted with a precision of about $60%$ due to its variability (ignoring any statistical noise). This is larger than the characteristic variability of the population by a factor of $sqrt{2}$ due to the uncertainty on the mean flux of the AGN due to a single prior measurement. The precision can thus be improved with multiple prior flux measurements (reducing the $sqrt{2}$ factor), or by reducing the interval between observations to reduce the characteristic variability.
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archiva l observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power-law) originating from the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of summer 2013 (including XMM-Newton, NuSTAR and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~ 5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
113 - Mouyuan Sun 2020
Active galactic nuclei (AGNs) have long been observed to twinkle (i.e., their brightness varies with time) on timescales from days to years in the UV/optical bands. Such AGN UV/optical variability is essential for probing the physics of supermassive black holes (SMBHs), the accretion disk, and the broad-line region. Here we show that the temperature fluctuations of an AGN accretion disk, which is magnetically coupled with the corona, can account for observed high-quality AGN optical light curves. We calculate the temperature fluctuations by considering the gas physics of the accreted matter near the SMBH. We find that the resulting simulated AGN UV/optical light curves share the same statistical properties as the observed ones as long as the dimensionless viscosity parameter $alpha$, which is widely believed to be controlled by magnetohydrodynamic (MHD) turbulence in the accretion disk, is about $0.01$---$0.2$. Moreover, our model can simultaneously explain the larger-than-expected accretion disk sizes and the dependence of UV/optical variability upon wavelength for NGC 5548. Our model also has the potential to explain some other observational facts of AGN UV/optical variability, including the timescale-dependent bluer-when-brighter color variability and the dependence of UV/optical variability on AGN luminosity and black hole mass. Our results also demonstrate a promising way to infer the black-hole mass, the accretion rate, and the radiative efficiency, thereby facilitating understanding of the gas physics and MHD turbulence near the SMBH and its cosmic mass growth history by fitting the AGN UV/optical light curves in the era of time-domain astronomy.
111 - Main Pal 2017
We present detailed broadband UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ~4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor ~7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ~2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10% level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behavior is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behavior of the variations.
A strong outburst in the X-ray continuum and a change of its Seyfert spectral type was detected in HE 1136-2304 in 2014. The spectral type changed from nearly Seyfert 2 type (1.95) to Seyfert 1.5 type in comparison to previous observations taken ten to twenty years before. In a subsequent variability campaign we wanted to investigate whether this outburst was a single event or whether the variability pattern following the outburst was similar to those seen in other variable Seyfert galaxies. In addition to a SALT spectral variability campaign, we carried out optical continuum as well as X-ray and UV (Swift) monitoring studies from 2014 to 2017. HE 1136-2304 strongly varied on timescales of days to months from 2014 to 2017. No systematic trends were found in the variability behavior following the outburst in 2014. A general decrease in flux would have been expected for a tidal disruption event. This could not be confirmed. More likely the flux variations are connected to irregular fluctuations in the accretion rate. The strongest variability amplitudes have been found in the X-ray regime: HE 1136-2304 varied by a factor of eight during 2015. The amplitudes of the continuum variability (from the UV to the optical) systematically decreased with wavelength following a power law F_var = a ${times}$ {lambda}^-c with c = 0.84. There is a trend that the B-band continuum shows a delay of three light days with respect to the variable X-ray flux. The Seyfert type 1.5 did not change despite the strong continuum variations for the period between 2014 and 2017.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا