ﻻ يوجد ملخص باللغة العربية
Caching and rate allocation are two promising approaches to support video streaming over wireless network. However, existing rate allocation designs do not fully exploit the advantages of the two approaches. This paper investigates the problem of cache-enabled QoE-driven video rate allocation problem. We establish a mathematical model for this problem, and point out that it is difficult to solve the problem with traditional dynamic programming. Then we propose a deep reinforcement learning approaches to solve it. First, we model the problem as a Markov decision problem. Then we present a deep Q-learning algorithm with a special knowledge transfer process to find out effective allocation policy. Finally, numerical results are given to demonstrate that the proposed solution can effectively maintain high-quality user experience of mobile user moving among small cells. We also investigate the impact of configuration of critical parameters on the performance of our algorithm.
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users. To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users and enhance their imm
Due to the high bandwidth requirements and stringent delay constraints of multi-user wireless video transmission applications, ensuring that all video senders have sufficient transmission opportunities to use before their delay deadlines expire is a
Radio access network (RAN) slicing is an important part of network slicing in 5G. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) tec
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access (RSMA) network. In the network, messages intended for users are split into different parts that are a single common part and respe
Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links and high signalling overhead of centralized resource al