ﻻ يوجد ملخص باللغة العربية
The ultrafine entanglement witness, introduced in [F. Shahandeh, M. Ringbauer, J.C. Loredo, and T.C. Ralph, Phys. Rev. Lett. textbf{118}, 110502 (2017)], can seamlessly and easily improve any standard entanglement witness. In this paper, by combining the constraint and the test operators, we rotate the hyperplane determined by the test operator and improve further the original ultrafine entanglement witness. In particular, we present a series of new ultrafine entanglement witnesses, which not only can detect entangled states that the original ultrafine entanglement witnesses cannot detect, but also have the merits that the original ultrafine entanglement witnesses have.
Entanglement witnesses (EWs) are a fundamental tool for the detection of entanglement. We study the inertias of EWs, i.e., the triplet of the numbers of negative, zero, and positive eigenvalues respectively. We focus on the EWs constructed by the par
In a recent work [A. Aloy et al. arXiv:1807:06027 (2018)] we have considered the characterization of entanglement depth, from a device-independent perspective, in a quantum many-body system. We have shown that the inequalities introduced in [J. Tura
An entanglement witness is an observable detecting entanglement for a subset of states. We present a framework that makes an entanglement witness twice as powerful due to the general existence of a second (lower) bound, in addition to the (upper) bou
We show that each entanglement witness detecting given bipartite entangled state provides an estimation of its concurrence. We illustrate our result with several well known examples of entanglement witnesses and compare the corresponding estimation o
We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides na