Striking Isotope Effect on the Metallization Phase Lines of Liquid Hydrogen and Deuterium


الملخص بالإنكليزية

Liquid atomic metallic hydrogen is the simplest, lightest, and most abundant of all liquid metals. The role of nucleon motions or ion dynamics has been somewhat ignored in relation to the dissociative insulator-metal transition. Almost all previous experimental high-pressure studies have treated the fluid isotopes, hydrogen and deuterium, with no distinction. Studying both hydrogen and deuterium at the same density, most crucially at the phase transition line, can experimentally reveal the importance of ion dynamics. We use static compression to study the optical properties of dense deuterium in the pressure region of 1.2-1.7 Mbar and measured temperatures up to ~3000 K. We observe an abrupt increase in reflectance, consistent with dissociation-induced metallization, at the transition. Here we show that at the same pressure (density) for the two isotopes, the phase line of this transition reveals a prominent isotopic shift, ~700 K. This shift is lower than the isotopic difference in the free-molecule dissociation energies, but it is still large considering the high density of the liquid and the complex many-body effects. Our work reveals the importance of quantum nuclear effects in describing the metallization transition and conduction properties in dense hydrogen systems at conditions of giant planetary interiors, and provides an invaluable benchmark for ab-initio calculations.

تحميل البحث