ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonuclear Reactions in Astrophysics

71   0   0.0 ( 0 )
 نشر من قبل Thomas Rauscher
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauscher




اسأل ChatGPT حول البحث

A brief overview of the importance of photodisintegration reactions in astrophysical environments is given and the relevance of photonuclear experiments for nucleosynthesis studies is discussed.



قيم البحث

اقرأ أيضاً

62 - Teruaki Enoto 2017
Lightning and thundercloud are the most dramatic natural particle accelerators on the Earth. Relativistic electrons accelerated by electric fields therein emit bremsstrahlung gamma rays, which have been detected at ground observations, by airborne de tectors, and as terrestrial gamma-ray flashes (TGFs) from space. The energy of the gamma rays is sufficiently high to potentially invoke atmospheric photonuclear reactions 14N(gamma, n)13N, which would produce neutrons and eventually positrons via beta-plus decay of generated unstable radioactive isotopes, especially 13N. However, no clear observational evidence for the reaction has been reported to date. Here we report the first detection of neutron and positron signals from lightning with a ground observation. During a thunderstorm on 6 February 2017 in Japan, a TGF-like intense flash (within 1 ms) was detected at our monitoring sites 0.5-1.7 km away from the lightning. The subsequent initial burst quickly subsided with an exponential decay constant of 40-60 ms, followed by a prolonged line emission at about 0.511 megaelectronvolt (MeV), lasting for a minute. The observed decay timescale and spectral cutoff at about 10 MeV of the initial emission are well explained with de-excitation gamma rays from the nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to the electron-positron annihilation, and hence is the conclusive indication of positrons produced after the lightning. Our detection of neutrons and positrons is unequivocal evidence that natural lightning triggers photonuclear reactions. No other natural event on the Earth is known to trigger photonuclear reactions. This discovery places lightning as only the second known natural channel on the Earth after the atmospheric cosmic-ray interaction, in which isotopes, such as 13C, 14C, and 15N, are produced.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcom e of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9- 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
301 - W. Schadow 2000
We discuss the available data for the differential and the total cross section for the photodisintegration of $^3$He and $^3$H and the corresponding inverse reactions below $E_gamma = 100$ MeV by comparing with our calculations using realistic $NN$ i nteractions. The theoretical results agree within the errorbars with the data for the total cross sections. Excellent agreement is achieved for the angular distribution in case of $^3$He, whereas for $^3$H a discrepancy between theory and experiment is found.
Stochastic fluctuations of the neutron population within a nuclear reactor are typically prevented by operating the core at a sufficient power, since a deterministic behavior of the neutron population is required by automatic safety systems to detect unwanted power excursions. Recent works however pointed out that, under specific circumstances, non-Poissonian patterns could affect neutron spatial distributions. This motivated an international program to experimentally detect and characterize such fluctuations and correlations, which took place in 2017 at the Rensselaer Polytechnic Institute Reactor Critical Facility. The main findings of this program will indeed unveil patchiness in snapshots of neutron spatial distributions -- obtained with a dedicated numerical twin of the reactor -- that support this first experimental characterization of the neutron clustering phenomenon, while a stochastic model based on reaction-diffusion processes and branching random walks will reveal the key role played by the reactor intrinsic sources in understanding neutron spatial correlations.
157 - Jordi Jose 2011
Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoreti cal astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا