ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Equilibrium Chemistry and Destruction of CO by X-ray Flares

58   0   0.0 ( 0 )
 نشر من قبل Jonathan Mackey
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sources of X-rays such as active galactic nuclei and X-ray binaries are often variable by orders of magnitude in luminosity over timescales of years. During and after these flares the surrounding gas is out of chemical and thermal equilibrium. We introduce a new implementation of X-ray radiative transfer coupled to a time-dependent chemical network for use in 3D magnetohydrodynamical simulations. A static fractal molecular cloud is irradiated with X-rays of different intensity, and the chemical and thermal evolution of the cloud are studied. For a simulated $10^5$ M$_odot$ fractal cloud an X-ray flux $<0.01$ erg cm$^{-2}$ s$^{-1}$ allows the cloud to remain molecular, whereas most of the CO and H$_2$ are destroyed for a flux of $>1$ erg cm$^{-2}$ s$^{-1}$. The effects of an X-ray flare, which suddenly increases the X-ray flux by $10^5 times$ are then studied. A cloud exposed to a bright flare has 99% of its CO destroyed in 10-20 years, whereas it takes $>10^3$ years for 99% of the H$_2$ to be destroyed. CO is primarily destroyed by locally generated far-UV emission from collisions between non-thermal electrons and H$_2$; He$^+$ only becomes an important destruction agent when the CO abundance is already very small. After the flare is over, CO re-forms and approaches its equilibrium abundance after $10^3-10^5$ years. This implies that molecular clouds close to Sgr A$^*$ in the Galactic Centre may still be out of chemical equilibrium, and we predict the existence of clouds near flaring X-ray sources in which CO has been mostly destroyed but H is fully molecular.



قيم البحث

اقرأ أيضاً

189 - Th. Henning 2010
We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradia ted MWC 480 disk and compare the results to the disks around cooler T Tauri stars. We detected and mapped CCH in these disks with the IRAM Plateau de Bure Interferome- ter in the C- and D-configurations in the (1-0) and (2-1) transitions. Using an iterative minimization technique, the CCH column densities and excitation conditions are con- strained. Very low excitation temperatures are derived for the T Tauri stars. These values are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas- grain chemical network with surface reactions. Both model and observations suggest that CCH is a sensitive tracer of the X-ray and UV irradiation. The predicted radial dependency and source to source variations of CCH column densities qualitatively agree with the observed values, but the predicted column densities are too low by a factor of several. The chemical model fails to reproduce high concentrations of CCH in very cold disk midplane as derived from the observed low excitation condition for both the (1-0) and (2-1) transitions.
319 - G. Fabbiano , A. Paggi , M. Elvis 2019
A recent ALMA study of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110 by Rosario et al. (2019) has reported a remarkable lack of CO 2-1 emission from the circumnuclear region, where optical lines and H2 emission are observed, leading to the sug gestion of excitation of the molecular clouds by the AGN. Since interaction with X-ray photons could be the cause of this excitation, we have searched the archival Chandra data for corroborating evidence. We report an extra-nuclear ~1 (~170 pc) feature found in the soft (<1.0 keV) Chandra data of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110. This feature is elongated to the north of the nucleus and its shape matches well that of the optical lines and H2 emission observed in this region, which is devoid of CO 2-1 emission. The Chandra image completes the emerging picture of a multi-phase circumnuclear medium excited by the X-rays from the AGN, with dense warm molecular clouds emitting in H2 but depleted of CO 2-1 emission.
We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10^5 cm^{-3} for magnetic models and 10^6 cm^{-3} in non-magnetic models. At higher central densities the scaling approaches a power-law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T)^1/2. The mean molecular weight of ions is systematically lower than the usually assumed value of 20 - 30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H3+ ion. This significantly lower value implies that ambipolar diffusion operates faster.
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, CMEs, eruptive filaments, and various scales of jets. The different kinds of flares may have different character istics of energy and spectral distribution. In this work, we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behavior and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves, and X-ray observations of GOES, RHESSI, and Fermi/GBM. We found that: All the confined flare events were associated with a microwave continuum burst extending to frequencies of 9.4 - 15.4 GHz, and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz. The median value is around 9 GHz. The microwave burst energy (or fluence) as well as the peak frequency are found to provide useful criteria to estimate the power of solar flares. The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al. 2004. All 10 events studied did not produce detectable hard X-rays with energies above 300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.
We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا