ﻻ يوجد ملخص باللغة العربية
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such a optical systems. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such system with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pluses can be used as an optical analog of quantum gravity.
The well-known (1+1D) nonlinear Schrodinger equation (NSE) governs the propagation of narrow-band pulses in optical fibers and others one-dimensional structures. For exploration the evolution of broad-band optical pulses (femtosecond and attosecond)
The resolvent of supersymmetric Dirac Hamiltonian is studied in detail. Due to supersymmetry the squared Dirac Hamiltonian becomes block-diagonal whose elements are in essence non-relativistic Schrodinger-type Hamiltonians. This enables us to find a
We propose an idea of the constrained Feynman amplitude for the scattering of the charged lepton and the virtual W-boson, $l_{beta} + W_{rho} rightarrow l_{alpha} + W_{lambda}$, from which the conventional Pontecorvo oscillation formula of relativist
Hawkings seminal discovery of black hole evaporation was based on the semi-classical, perturbative method. Whether black hole evaporation may result in the loss of information remains undetermined. The solution to this paradox would most likely rely
Path integral solutions are obtained for the the PT-/non-PT-Symmetric and non-Hermitian Morse Potential. Energy eigenvalues and the corresponding wave functions are obtained.