ﻻ يوجد ملخص باللغة العربية
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that $T^2=-1$ for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators $eta$, which are quadratically nilpotent ($eta^2=0$), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: $etaeta^{PT}+eta^{PT}eta=-1$, where $eta^{PT}$ is the PT adjoint of $eta$, and $etaeta^{CPT}+eta^{CPT}eta=1$, where $eta^{CPT}$ is the CPT adjoint of $eta$. This paper presents matrix representations for the operator $eta$ and its PT and CPT adjoints in two and four dimensions. A PT-symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
The quantum mechanical brachistochrone system with PT-symmetric Hamiltonian is Naimark dilated and reinterpreted as subsystem of a Hermitian system in a higher-dimensional Hilbert space. This opens a way to a direct experimental implementation of the
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po
The PT-symmetric (PTS) quantum brachistochrone problem is reanalyzed as quantum system consisting of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this specific setup as subsystem of a larger Hermitian sy
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT -symmetric lattices. For each configuration, we develop a dynamical model and examine its PT symmet
We study the meromorphic open-string vertex algebras and their modules over the two-dimensional Riemannian manifolds that are complete, connected, orientable, and of constant sectional curvature $K eq 0$. Using the parallel tensors, we explicitly det