ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Couplings at High Scales

68   0   0.0 ( 0 )
 نشر من قبل Satyanarayan Mukhopadhyay
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.



قيم البحث

اقرأ أيضاً

The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixin g angle $cosgamma to 0$, we briefly review the collider probes of the top changing $tcH/tcA$ coupling $rho_{tc}$ of the exotic $CP$-even/odd Higgs bosons $H/A$. Together with an extra top conserving $ttH/ttA$ coupling $rho_{tt}$, one has an enhanced $cbH^+$ coupling alongside the familiar $tbH^+$ coupling, where $H^+$ is the charged Higgs boson. The main processes we advocate are $cg to tH/A to ttbar c,; ttbar t$ (same-sign top and triple-top), and $cg to bH^+ to btbar b$. We also discuss some related processes such as $cg to thh$, $tZH$ that depend on $cosgamma$ being nonzero, comment briefly on $gg to H/A to tbar t, tbar c$ resonant production, and touch upon the $rho_{tu}$ coupling.
We investigate a new scenario of the two Higgs doublet model, where the current experimental data for the electroweak rho parameter and those for the Higgs boson couplings can be simultaneously explained. In this scenario, the two Higgs doublet model is supposed to be a low energy effective theory up to a high energy scale $Lambda$, above which a fundamental theory should appear. It is assumed that the Higgs potential respects a global symmetry at $Lambda$ (the twisted custodial symmetry), which is to be given as a consequence of the global symmetry structure of the fundamental theory above $Lambda$. By the analysis using one-loop renormalization group equations, the above experimental data can be explained in a natural way even when the masses of the extra Higgs bosons are near the electroweak scale. We also discuss the predictions on the mass spectrum of the additional Higgs bosons and also those on coupling constants of the standard-model-like Higgs boson, which make it possible to test this scenario at current and future collider experiments.
179 - Rick S. Gupta , Marc Montull , 2012
In supersymmetric models, a correlation exists between the structure of the Higgs sector quartic potential and the coupling of the lightest CP-even Higgs to fermions and gauge bosons. We exploit this connection to relate the observed value of the Hig gs mass ~ 125 GeV to the magnitude of its couplings. We analyze different scenarios ranging from the MSSM with heavy stops to more natural models with additional non-decoupling D-term/F-term contributions. A comparison with the most recent LHC data, allows to extract bounds on the heavy Higgs boson masses, competitive with bounds from direct searches.
66 - M.M. Muhlleitner 2001
In order to verify the Higgs mechanism experimentally, the Higgs self-couplings have to be probed. These couplings allow the reconstruction of the characteristic Higgs potential responsible for the electroweak symmetry breaking. The couplings are acc essible in a variety of multiple Higgs production processes. The theoretical analysis including the most relevant channels for the production of neutral Higgs boson pairs at high-energy and high-luminosity $e^+e^-$ linear colliders will be presented in this note.
Higgs production in association with a photon at hadron colliders is a rare process, not yet observed at the LHC. We show that this process is sensitive to significant deviations of Higgs couplings to first and second generation SM quarks (particular ly the up-type) from their SM values, and use a multivariate neural network analysis to derive the prospects of the High Luminosity LHC to probe deviations in the up and charm Higgs Yukawa couplings through $h + gamma$ production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا