ﻻ يوجد ملخص باللغة العربية
Astrometry from space has unique advantages over ground-based observations: the all-sky coverage, relatively stable, and temperature and gravity invariant operating environment delivers precision, accuracy and sample volume several orders of magnitude greater than ground-based results. Even more importantly, absolute astrometry is possible. The European Space Agency Cornerstone mission Gaia is delivering that promise. Gaia provides 5-D phase space measurements - 3 spatial coordinates and two space motions in the plane of the sky - for a representative sample of the Milky ways stellar populations, including over two billion stars, being about one percent of the stars over about 50 percent of the radius. Full 6-D phase space data is delivered from Gaias line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. A knowledge revolution is underway.
We consider the possibility that the Milky Ways dark matter halo possesses a non vanishing equation of state. Consequently, we evaluate the contribution due to the speed of sound, assuming that the dark matter content of the galaxy behaves like a flu
Flat rotation curves in disk galaxies represent the main evidence for large amounts of surrounding dark matter. Despite of the difficulty in identifying the dark matter contribution to the total mass density in our Galaxy, stellar kinematics, as trac
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and mar
We perform a test of John Moffats Modified Gravity theory (MOG) within the Milky Way, adopting the well known Rotation Curve method. We use the dynamics of observed tracers within the disk to determine the gravitational potential as a function of gal
We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su