ﻻ يوجد ملخص باللغة العربية
Magnetic field is one of the key agents that play a crucial role in shaping molecular clouds and regulating star formation, yet the complete information on the magnetic field is not well constrained due to the limitations in observations. We study the magnetic field in the massive infrared dark cloud G035.39-00.33 from dust continuum polarization observations at 850 $micron$ with SCUBA-2/POL-2 at JCMT. The magnetic field tends to be perpendicular to the densest part of the main filament (F$_{M}$), whereas it has a less defined relative orientation in the rest of the structure, where it tends to be parallel to some diffuse regions. A mean plane-of-the-sky magnetic field strength of $sim$50 $mu$G for F$_{M}$ is obtained using Davis-Chandrasekhar-Fermi method. Based on $^{13}$CO (1-0) line observations, we suggest a formation scenario of F$_{M}$ due to large-scale ($sim$10 pc) cloud-cloud collision. Using additional NH$_3$ line data, we estimate that F$_{M}$ will be gravitationally unstable if it is only supported by thermal pressure and turbulence. The northern part of F$_{M}$, however, can be stabilized by a modest additional support from the local magnetic field. The middle and southern parts of F$_{M}$ are likely unstable even if the magnetic field support is taken into account. We claim that the clumps in F$_{M}$ may be supported by turbulence and magnetic fields against gravitational collapse. Finally, we identified for the first time a massive ($sim$200 M$_{sun}$), collapsing starless clump candidate, c8, in G035.39-00.33. The magnetic field surrounding c8 is likely pinched, hinting at an accretion flow along the filament.
Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at th
The dust sub-millimetre polarisation of star-forming clouds carries information on dust and the role of magnetic fields in cloud evolution. With observations of a dense filamentary cloud G035.39-00.33, we aim to characterise the dust emission propert
We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-forming regions with the mean orientations of the magnetic fields on 0.05-0.5 pc scales in the dense cores/clumps where they are embedded
We combine low energy muon spin rotation (LE-$mu$SR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)$_2$Te$_3$. We find that one
Interpretations of synchrotron observations often assume a tight correlation between magnetic and cosmic ray energy densities. We examine this assumption using both test-particle simulations of cosmic rays and MHD simulations which include cosmic ray