ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy production and rectification efficiency in colloids transport along a pulsating channel

410   0   0.0 ( 0 )
 نشر من قبل Mar\\'ia Florencia Carusela
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the current rectification of particles moving in a pulsating channel under the in uence of an applied force. We have shown the existence of diferent rectification scenarios in which entropic and energetic effects compete. The effect can be quantified by means of a rectification coefficient that is analyzed in terms of the force, the frequency and the diffusion coefficient. The energetic cost of the motion of the particles expressed in terms of the entropy production depends on the importance of the entropic contribution to the total force. Rectification is more important at low values of the applied force when entropic effects become dominant. In this regime, the entropy production is not invariant under reversal of the applied force. The phenomenon observed could be used to optimize transport in microfluidic devices or in biological channels.



قيم البحث

اقرأ أيضاً

We show that a rich variety of dynamic phases can be realized for mono- and bidisperse mixtures of interacting colloids under the influence of a symmetric flashing periodic substrate. With the addition of dc or ac drives, phase locking, jamming, and new types of ratchet effects occur. In some regimes we find that the addition of a non-ratcheting species increases the velocity of the ratcheting particles. We show that these effects occur due to the collective interactions of the colloids.
91 - D.V. Tkachenko , V.R. Misko , 2009
Using Brownian dynamics simulations, we investigate the dynamics of colloids confined in two-dimensional narrow channels driven by a non-uniform force F(y). We considered linear-gradient, parabolic and delta-like driving-force profiles. This driving force induces melting of the colloidal solid (i.e., shear-induced melting), and the colloidal motion experiences a transition from elastic to plastic regime with increasing F. For intermediate F (i.e., in the transition region) the response of the system, i.e., the distribution of the velocities of the colloidal chains, in general does not coincide with the profile of the driving force F(y), and depends on the magnitude of F, the width of the channel and the density of colloids. For example, we show that the onset of plasticity is first observed near the boundaries while the motion in the central region is elastic. This is explained by: (i) (in)commensurability between the chains due to the larger density of colloids near the boundaries, and (ii) the gradient in F. Our study provides a deeper understanding of the dynamics of colloids in channels and could be accessed in experiments on colloids (or in dusty plasma) with, e.g., asymmetric channels or in the presence of a gradient potential field.
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a single heat bath of a constant temperature $T_3$. In the steady state, the total entropy production for both particles obeys the fluctuation theorem. We compute the total entropy production due to one of the particles called as partial or apparent entropy production, in the steady state for a time segment $tau$. When both particles are weakly interacting with each other, the fluctuation theorem for partial and apparent entropy production is studied. We find a significant deviation from the fluctuation theorem. The analytical results are also verified using numerical simulations.
363 - B. Leggio , A. Napoli , A. Messina 2013
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-the rmal contribution to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These features lead to a quantum definition of single trajectory entropy contributions, which accounts for the difference between classical and quantum trajectories and results in a quantum correction to the standard form of the integral fluctuation theorem.
Maxwells demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this intelligent observer is capable of compensating entropy production (or extracting work), apparently challenging th e second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwells demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility on a non-equilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا