We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time--frequency analysis method, namely the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable to resolving weak signals even when their strength is comparable with the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12~mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 AA illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time--distance diagram, coupled with a subsonic wave speed ($sim$ 49 km s$^{-1}$), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.