ﻻ يوجد ملخص باللغة العربية
Cosmic voids are an important probe of large-scale structure that can constrain cosmological parameters and test cosmological models. We present a new paradigm for void studies: void detection in weak lensing convergence maps. This approach identifies objects that relate directly to our theoretical understanding of voids as underdensities in the total matter field and presents several advantages compared to the customary method of finding voids in the galaxy distribution. We exemplify this approach by identifying voids using the weak lensing peaks as tracers of the large-scale structure. We find self-similarity in the void abundance across a range of peak signal-to-noise selection thresholds. The voids obtained via this approach give a tangential shear signal up to $sim40$ times larger than voids identified in the galaxy distribution.
Upcoming surveys such as LSST{} and Euclid{} will significantly improve the power of weak lensing as a cosmological probe. To maximise the information that can be extracted from these surveys, it is important to explore novel statistics that compleme
We study the morphology of convergence maps by perturbatively reconstructing their Minkowski Functionals (MFs). We present a systematics study using a set of three generalised skew-spectra as a function of source redshift and smoothing angular scale.
Cosmic voids are a key component of the large-scale structure that contain a plethora of cosmological information. Typically, voids are identified from the underlying galaxy distribution, which is a biased tracer of the total matter field. Previous w
Weak lensing surveys are emerging as an important tool for the construction of mass selected clusters of galaxies. We evaluate both the efficiency and completeness of a weak lensing selection by combining a dense, complete redshift survey, the Smiths
We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zeldovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed highe