ﻻ يوجد ملخص باللغة العربية
We establish Ambrosetti--Prodi type results for viscosity and classical solutions of nonlinear Dirichlet problems for the fractional Laplace and comparable operators. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. We develop a new technique using a functional integration-based approach, which is more robust in the non-local context than a purely analytic treatment.
In this article we present a simple and unified probabilistic approach to prove nonexistence of positive super-solutions for systems of equations involving potential terms and the fractional Laplacian in an exterior domain. Such problems arise in the
In the whole space $mathbb R^d$, linear estimates for heat semi-group in Besov spaces are well established, which are estimates of $L^p$-$L^q$ type, maximal regularity, e.t.c. This paper is concerned with such estimates for semi-group generated by th
We establish an upper bound of the sum of the eigenvalues for the Dirichlet problem of the fractional Laplacian. Our result is obtained by a subtle computation of the Rayleigh quotient for specific functions.
In this paper, we derive Carleman estimates for the fractional relativistic operator. Firstly, we consider changing-sign solutions to the heat equation for such operators. We prove monotonicity inequalities and convexity of certain energy functionals
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall